Back to Search
Start Over
A Computational Method for Classifying Different Human Tissues with Quantitatively Tissue-Specific Expressed Genes
- Source :
- Genes, Volume 9, Issue 9, Genes, Vol 9, Iss 9, p 449 (2018)
- Publication Year :
- 2018
-
Abstract
- Tissue-specific gene expression has long been recognized as a crucial key for understanding tissue development and function. Efforts have been made in the past decade to identify tissue-specific expression profiles, such as the Human Proteome Atlas and FANTOM5. However, these studies mainly focused on &ldquo<br />qualitatively tissue-specific expressed genes&rdquo<br />which are highly enriched in one or a group of tissues but paid less attention to &ldquo<br />quantitatively tissue-specific expressed genes&rdquo<br />which are expressed in all or most tissues but with differential expression levels. In this study, we applied machine learning algorithms to build a computational method for identifying &ldquo<br />capable of distinguishing 25 human tissues from their expression patterns. Our results uncovered the expression of 432 genes as optimal features for tissue classification, which were obtained with a Matthews Correlation Coefficient (MCC) of more than 0.99 yielded by a support vector machine (SVM). This constructed model was superior to the SVM model using tissue enriched genes and yielded MCC of 0.985 on an independent test dataset, indicating its good generalization ability. These 432 genes were proven to be widely expressed in multiple tissues and a literature review of the top 23 genes found that most of them support their discriminating powers. As a complement to previous studies, our discovery of these quantitatively tissue-specific genes provides insights into the detailed understanding of tissue development and function.
- Subjects :
- 0301 basic medicine
lcsh:QH426-470
Feature selection
Computational biology
Biology
Matthews correlation coefficient
Article
Support vector machine
Transcriptome
tissue-specific expressed genes
lcsh:Genetics
03 medical and health sciences
030104 developmental biology
feature selection
Gene expression
Genetics
Human proteome project
tissue classification
Tissue specific
support vector machine
Gene
transcriptome
Genetics (clinical)
Subjects
Details
- ISSN :
- 20734425
- Volume :
- 9
- Issue :
- 9
- Database :
- OpenAIRE
- Journal :
- Genes
- Accession number :
- edsair.doi.dedup.....b79eddfdc2467e2aa3c9b24de999de02