Back to Search
Start Over
Reprogramming the antigen specificity of B cells using genomeediting technologies
- Publication Year :
- 2018
- Publisher :
- Cold Spring Harbor Laboratory, 2018.
-
Abstract
- We have developed a method to introduce novel paratopes into the human antibody repertoire by modifying the immunoglobulin genes of mature B cells directly using genome editing technologies. We used CRISPR-Cas9 in a homology directed repair strategy, to replace the heavy chain (HC) variable region in B cell lines with that from an HIV broadly neutralizing antibody, PG9. Our strategy is designed to function in cells that have undergone VDJ recombination using any combination of variable (V), diversity (D) and joining (J) genes. The modified locus expresses PG9 HC which pairs with native light chains resulting in the cell surface expression of HIV specific B cell receptors (BCRs). Endogenous activation-induced cytidine deaminase (AID) in engineered cells allowed for Ig class switching and generated BCR variants with improved anti-HIV neutralizing activity. Thus, BCRs engineered in this way retain the genetic flexibility normally required for affinity maturation during adaptive immune responses.
- Subjects :
- 0303 health sciences
B-cell receptor
Cytidine deaminase
Biology
Immunoglobulin light chain
3. Good health
Cell biology
Affinity maturation
Homology directed repair
03 medical and health sciences
0302 clinical medicine
medicine.anatomical_structure
Genome editing
Immunoglobulin class switching
medicine
B cell
030304 developmental biology
030215 immunology
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....b780002bba5efb8a4d76bbb3a30f91ba