Back to Search Start Over

Reprogramming the antigen specificity of B cells using genomeediting technologies

Authors :
Wenjuan Li
Raiees Andrabi
David Nemazee
Ann J. Feeney
Paula M. Cannon
Laura E. McCoy
Alicia Gonzalez-Martin
Dennis R. Burton
Khoa Le
Lars Hangartner
Devin Sok
Katelyn Porter
Roberta P. Fuller
Bryan Briney
Geoffrey L. Rogers
Morgan Chateau
James E. Voss
Deli Huang
Ben Murrell
Publication Year :
2018
Publisher :
Cold Spring Harbor Laboratory, 2018.

Abstract

We have developed a method to introduce novel paratopes into the human antibody repertoire by modifying the immunoglobulin genes of mature B cells directly using genome editing technologies. We used CRISPR-Cas9 in a homology directed repair strategy, to replace the heavy chain (HC) variable region in B cell lines with that from an HIV broadly neutralizing antibody, PG9. Our strategy is designed to function in cells that have undergone VDJ recombination using any combination of variable (V), diversity (D) and joining (J) genes. The modified locus expresses PG9 HC which pairs with native light chains resulting in the cell surface expression of HIV specific B cell receptors (BCRs). Endogenous activation-induced cytidine deaminase (AID) in engineered cells allowed for Ig class switching and generated BCR variants with improved anti-HIV neutralizing activity. Thus, BCRs engineered in this way retain the genetic flexibility normally required for affinity maturation during adaptive immune responses.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....b780002bba5efb8a4d76bbb3a30f91ba