Back to Search Start Over

Correction for Li et al., 'Global Transcriptional Repression of Diguanylate Cyclases by MucR1 Is Essential for

Authors :
Meng-Lin Li
Jian Jiao
Biliang Zhang
Wen-Tao Shi
Wen-Hao Yu
Chang-Fu Tian
Source :
mBio, mBio, Vol 12, Iss 6 (2021)
Publication Year :
2021

Abstract

The ubiquitous bacterial second messenger c-di-GMP is intensively studied in pathogens but less so in mutualistic bacteria. Here, we report a genome-wide investigation of functional diguanylate cyclases (DGCs) synthesizing c-di-GMP from two molecules of GTP in Sinorhizobium fredii CCBAU45436, a facultative microsymbiont fixing nitrogen in nodules of diverse legumes, including soybean. Among 25 proteins harboring a putative GGDEF domain catalyzing the biosynthesis of c-di-GMP, eight functional DGCs were identified by heterogenous expression in Escherichia coli in a Congo red binding assay. This screening result was further verified by in vitro enzymatic assay with purified full proteins or the GGDEF domains from representative functional and nonfunctional DGCs. In the same in vitro assay, a functional EAL domain catalyzing the degradation of c-di-GMP into pGpG was identified in a protein that has an inactive GGDEF domain but with an active phosphodiesterase (PDE) function. The identified functional DGCs generally exhibited low transcription levels in soybean nodules compared to free-living cultures, as revealed in transcriptomes. An engineered upregulation of a functional DGC in nodules led to a significant increase of c-di-GMP level and symbiotic defects, which were not observed when a functional EAL domain was upregulated at the same level. Further transcriptional analysis and gel shift assay demonstrated that these functional DGCs were all transcriptionally repressed in nodules by a global pleiotropic regulator, MucR1, that is essential in Sinorhizobium-soybean symbiosis. These findings shed novel insights onto the systematic regulation of c-di-GMP biosynthesis in mutualistic symbiosis.

Details

ISSN :
21507511
Volume :
12
Issue :
6
Database :
OpenAIRE
Journal :
mBio
Accession number :
edsair.doi.dedup.....b726bcd58505e82927aa93b85bcf42ec