Back to Search Start Over

Understanding large-scale, long-term larval connectivity patterns: The case of the Northern Line Islands in the Central Pacific Ocean

Authors :
Luca Bonaventura
Marino Gatto
Simona Masina
Renato Casagrandi
Andrea Storto
Lorenzo Mari
Paco Melià
Source :
PLoS ONE, PLoS ONE, Vol 12, Iss 8, p e0182681 (2017), PloS one 12 (2017). doi:10.1371/journal.pone.0182681, info:cnr-pdr/source/autori:Mari, Lorenzo; Bonaventura, Luca; Storto, Andrea; Melia, Paco; Gatto, Marino; Masina, Simona; Casagrandi, Renato/titolo:Understanding large-scale, long-term larval connectivity patterns: The case of the Northern Line Islands in the Central Pacific Ocean/doi:10.1371%2Fjournal.pone.0182681/rivista:PloS one/anno:2017/pagina_da:/pagina_a:/intervallo_pagine:/volume:12
Publication Year :
2017
Publisher :
Public Library of Science, 2017.

Abstract

Protecting key hotspots of marine biodiversity is essential to maintain ecosystem services at large spatial scales. Protected areas serve not only as sources of propagules colonizing other habitats, but also as receptors, thus acting as protected nurseries. To quantify the geographical extent and the temporal persistence of ecological benefits resulting from protection, we investigate larval connectivity within a remote archipelago, characterized by a strong spatial gradient of human impact from pristine to heavily exploited: the Northern Line Islands (NLIs), including part of the Pacific Remote Islands Marine National Monument (PRI-MNM). Larvae are described as passive Lagrangian particles transported by oceanic currents obtained from a oceanographic reanalysis. We compare different simulation schemes and compute connectivity measures (larval exchange probabilities and minimum/average larval dispersal distances from target islands). To explore the role of PRI-MNM in protecting marine organisms with pelagic larval stages, we drive millions of individual-based simulations for various Pelagic Larval Durations (PLDs), in all release seasons, and over a two-decades time horizon (1991-2010). We find that connectivity in the NLIs is spatially asymmetric and displays significant intra- and inter-annual variations. The islands belonging to PRI-MNM act more as sinks than sources of larvae, and connectivity is higher during the winter-spring period. In multi-annual analyses, yearly averaged southward connectivity significantly and negatively correlates with climatological anomalies (El Nino). This points out a possible system fragility and susceptibility to global warming. Quantitative assessments of large-scale, long-term marine connectivity patterns help understand region-specific, ecologically relevant interactions between islands. This is fundamental for devising scientifically-based protection strategies, which must be space- and time-varying to cope with the challenges posed by the concurrent pressures of human exploitation and global climate change.

Details

Language :
English
ISSN :
19326203
Volume :
12
Issue :
8
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....b721e576c0bf24896b7fa044231b1f5b
Full Text :
https://doi.org/10.1371/journal.pone.0182681