Back to Search Start Over

Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic

Authors :
Caspar J. Van Lissa
Wolfgang Stroebe
Michelle R. vanDellen
N. Pontus Leander
Maximilian Agostini
Tim Draws
Andrii Grygoryshyn
Ben Gützgow
Jannis Kreienkamp
Clara S. Vetter
Georgios Abakoumkin
Jamilah Hanum Abdul Khaiyom
Vjolica Ahmedi
Handan Akkas
Carlos A. Almenara
Mohsin Atta
Sabahat Cigdem Bagci
Sima Basel
Edona Berisha Kida
Allan B.I. Bernardo
Nicholas R. Buttrick
Phatthanakit Chobthamkit
Hoon-Seok Choi
Mioara Cristea
Sára Csaba
Kaja Damnjanović
Ivan Danyliuk
Arobindu Dash
Daniela Di Santo
Karen M. Douglas
Violeta Enea
Daiane Gracieli Faller
Gavan J. Fitzsimons
Alexandra Gheorghiu
Ángel Gómez
Ali Hamaidia
Qing Han
Mai Helmy
Joevarian Hudiyana
Bertus F. Jeronimus
Ding-Yu Jiang
Veljko Jovanović
Željka Kamenov
Anna Kende
Shian-Ling Keng
Tra Thi Thanh Kieu
Yasin Koc
Kamila Kovyazina
Inna Kozytska
Joshua Krause
Arie W. Kruglanksi
Anton Kurapov
Maja Kutlaca
Nóra Anna Lantos
Edward P. Lemay
Cokorda Bagus Jaya Lesmana
Winnifred R. Louis
Adrian Lueders
Najma Iqbal Malik
Anton P. Martinez
Kira O. McCabe
Jasmina Mehulić
Mirra Noor Milla
Idris Mohammed
Erica Molinario
Manuel Moyano
Hayat Muhammad
Silvana Mula
Hamdi Muluk
Solomiia Myroniuk
Reza Najafi
Claudia F. Nisa
Boglárka Nyúl
Paul A. O’Keefe
Jose Javier Olivas Osuna
Evgeny N. Osin
Joonha Park
Gennaro Pica
Antonio Pierro
Jonas H. Rees
Anne Margit Reitsema
Elena Resta
Marika Rullo
Michelle K. Ryan
Adil Samekin
Pekka Santtila
Edyta M. Sasin
Birga M. Schumpe
Heyla A. Selim
Michael Vicente Stanton
Samiah Sultana
Robbie M. Sutton
Eleftheria Tseliou
Akira Utsugi
Jolien Anne van Breen
Kees Van Veen
Alexandra Vázquez
Robin Wollast
Victoria Wai-Lan Yeung
Somayeh Zand
Iris Lav Žeželj
Bang Zheng
Andreas Zick
Claudia Zúñiga
Jocelyn J. Bélanger
Social Psychology
Developmental Psychology
Research programme OB
Research programme GEM
Sociale Psychologie (Psychologie, FMG)
University of Groningen
SOM OB
Experimental Psychology
SOM GEM
Source :
Patterns, 3(4), Patterns (New York, N.Y.), 3(4):100482, Patterns, 3(4):100482. Elsevier, Universidad Peruana de Ciencias Aplicadas (UPC), Repositorio Academico-UPC, UPC-Institucional, Universidad Peruana de Ciencias Aplicadas, instacron:UPC, Patterns, Van Lissa, C J, Gützkow, B, vanDellen, M R, Dash, A, Draws, T, Stroebe, W, Leander, N P, Agostini, M, Grygoryshyn, A, Kreienkamp, J, Vetter, C S, Abakoumkin, G, Abdul Khaiyom, J H, Ahmedi, V, Akkas, H, Almenara, C A, Atta, M, Bagci, S C, Basel, S, Kida, E B, Bernardo, A B I, Buttrick, N R, Chobthamkit, P, Choi, H S, Cristea, M, Csaba, S, Damnjanović, K, Danyliuk, I, Di Santo, D, Douglas, K M, Enea, V, Faller, D G, Fitzsimons, G, Gheorghiu, A, Gómez, Á, Hamaidia, A, Han, Q, Helmy, M, Hudiyana, J, Jeronimus, B F, Jiang, D Y, Jovanović, V, Kamenov, Ž, Kende, A, Keng, S L, Kieu, T T T, Koc, Y, Kovyazina, K, Kozytska, I, Krause, J, Kruglanksi, A W, Kurapov, A, Kutlaca, M, Lantos, N A, Lemay, E P, Lesmana, C B J, Louis, W R, Lueders, A, Malik, N I, Martinez, A, McCabe, K O, Mehulić, J, Milla, M N, Mohammed, I, Molinario, E, Moyano, M, Muhammad, H, Mula, S, Muluk, H, Myroniuk, S, Najafi, R, Nisa, C F, Nyúl, B, O’Keefe, P A, Osuna, J J O, Osin, E N, Park, J, Pica, G, Pierro, A, Rees, J H, Reitsema, A M, Resta, E, Rullo, M, Ryan, M K, Samekin, A, Santtila, P, Sasin, E M, Schumpe, B M, Selim, H A, Stanton, M V, Sultana, S, Sutton, R M, Tseliou, E, Utsugi, A, van Breen, J A, Van Veen, K, Vázquez, A, Wollast, R, Yeung, V W L, Zand, S, Žeželj, I L, Zheng, B, Zick, A, Zúñiga, C & Bélanger, J J 2022, ' Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic ', Patterns, vol. 3, no. 4, 100482 . https://doi.org/10.1016/j.patter.2022.100482, Patterns, 3(4):100482
Publication Year :
2022

Abstract

Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant. New York University Abu Dhabi Revisión por pares

Details

Language :
English
ISSN :
26663899
Volume :
3
Issue :
4
Database :
OpenAIRE
Journal :
Patterns
Accession number :
edsair.doi.dedup.....b6ed5c0fd2c084f149e97fb59f44f090