Back to Search Start Over

Global Regularity of 2D almost resistive MHD Equations

Authors :
Jiefeng Zhao
Baoquan Yuan
Publication Year :
2016
Publisher :
arXiv, 2016.

Abstract

Whether or not the solution to 2D resistive MHD equations is globally smooth remains open. This paper establishes the global regularity of solutions to the 2D almost resistive MHD equations, which require the dissipative operators $\mathcal{L}$ weaker than any power of the fractional Laplacian. The result is an improvement of the one of Fan et al. (Global Cauchy problem of 2D generalized MHD equations, Monatsh. Math., 175 (2014), pp. 127-131) which ask for $\alpha>0, \beta=1$.<br />Comment: 16 pages

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....b6dfa014aa075169b8cb91530465b83f
Full Text :
https://doi.org/10.48550/arxiv.1602.04549