Back to Search Start Over

A Big Data Demand Estimation Model for Urban Congested Networks

Authors :
Francesco Viti
Guido Cantelmo
Source :
Transport and Telecommunication, Vol 21, Iss 4, Pp 245-254 (2020)
Publication Year :
2020
Publisher :
Walter de Gruyter GmbH, 2020.

Abstract

The origin-destination (OD) demand estimation problem is a classical problem in transport planning and management. Traditionally, this problem has been solved using traffic counts, speeds or travel times extracted from location-based sensor data. With the advent of new sensing technologies located on vehicles (GPS) and nomadic devices (mobile and smartphones), new opportunities have emerged to improve the estimation accuracy and reliability, and more importantly to better capture the dynamics of the daily mobility patterns. In this paper we frame this new data in a comprehensive framework which estimates origin-destination flows in two steps: the first step estimates the total generated demand for each traffic zone, while the second step adjusts the spatial and temporal distribution on the different OD pairs. We show how mobile data can be used to obtain OD matrices that reflect the aggregated movements of individuals in complex and large-scale instances, while speed information from floating car data can be used in the second step. We showcase the added value of big data on a realistic network comprising Luxembourg’s capital city and its surrounding. We simulate traffic by means of a commercial simulation software, PTV-Visum, and leverage real mobile phone data from the largest telco operator in the country and real speed data from a floating car data service provider. Results show how OD estimation improves both in solution reliability and in convergence speed.

Details

ISSN :
14076179
Volume :
21
Database :
OpenAIRE
Journal :
Transport and Telecommunication Journal
Accession number :
edsair.doi.dedup.....b6de1de1189ec4bc655e95c43f2755ee