Back to Search Start Over

Understanding the Superior Stability of Single‐Molecule Magnets on an Oxide Film

Authors :
Studniarek, Michał
Wäckerlin, Christian
Singha, Aparajita
Baltic, Romana
Diller, Katharina
Donati, Fabio
Rusponi, Stefano
Brune, Harald
Lan, Yanhua
Klyatskaya, Svetlana
Ruben, Mario
Seitsonen, Ari Paavo
Dreiser, Jan
Swiss Light Source
Paul Scherrer Institute (PSI)
Institute of Physics, Ecole Polytechnique Féderale de Lausanne
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
Centre for Quantum Nanoscience
Institute for Basic Science (IBS)
Department of Physics, Ewha Womans University, Seoul
Institute of Nanotechnology [Karlsruhe] (INT)
Karlsruhe Institute of Technology (KIT)
Equipe de Physique Mésoscopique de l'IPCMS
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Département de Chimie, École Normale Supérieure
Centre National de la Recherche Scientifique (CNRS)
Source :
Advanced Science, Advanced Science, 2019, 6 (22), pp.1901736. ⟨10.1002/advs.201901736⟩, Advanced science, 6 (22), Article: 1901736, Advanced Science, Vol 6, Iss 22, Pp n/a-n/a (2019)
Publication Year :
2019
Publisher :
John Wiley and Sons Inc., 2019.

Abstract

The stability of magnetic information stored in surface adsorbed single‐molecule magnets is of critical interest for applications in nanoscale data storage or quantum computing. The present study combines X‐ray magnetic circular dichroism, density functional theory and magnetization dynamics calculations to gain deep insight into the substrate dependent relevant magnetization relaxation mechanisms. X‐ray magnetic circular dichroism reveals the opening of a butterfly‐shaped magnetic hysteresis of DyPc2 molecules on magnesium oxide and a closed loop on the bare silver substrate, while density functional theory shows that the molecules are only weakly adsorbed in both cases of magnesium oxide and silver. The enhanced magnetic stability of DyPc2 on the oxide film, in conjunction with previous experiments on the TbPc2 analogue, points to a general validity of the magnesium oxide induced stabilization effect. Magnetization dynamics calculations reveal that the enhanced magnetic stability of DyPc2 and TbPc2 on the oxide film is due to the suppression of two‐phonon Raman relaxation processes. The results suggest that substrates with low phonon density of states are beneficial for the design of spintronics devices based on single‐molecule magnets.<br />DyPc2 single‐molecule magnets on magnesium oxide exhibit a significantly more stable magnetic moment than on a silver substrate. Modeling of the magnetic hysteresis loops reveals that the stabilization effect originates from the suppression of the two‐phonon Raman process. The results suggest the perspective of enhancing the magnetic stability by weakly adsorbing substrates with low density of vibrational modes.

Details

Language :
English
ISSN :
21983844
Volume :
6
Issue :
22
Database :
OpenAIRE
Journal :
Advanced Science
Accession number :
edsair.doi.dedup.....b6d10a0a6985989c46f6f96163937e2b
Full Text :
https://doi.org/10.1002/advs.201901736⟩