Back to Search Start Over

Importins promote high-frequency NF-κB oscillations increasing information channel capacity

Authors :
Zbigniew Korwek
Karolina Tudelska
Joanna Markiewicz
Tomasz Lipniacki
Maciej Czerkies
Wiktor Prus
Paweł Nałęcz-Jawecki
Marek Kochańczyk
Source :
Biology Direct
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

Background Importins and exportins influence gene expression by enabling nucleocytoplasmic shuttling of transcription factors. A key transcription factor of innate immunity, NF-κB, is sequestered in the cytoplasm by its inhibitor, IκBα, which masks nuclear localization sequence of NF-κB. In response to TNFα or LPS, IκBα is degraded, which allows importins to bind NF-κB and shepherd it across nuclear pores. NF-κB nuclear activity is terminated when newly synthesized IκBα enters the nucleus, binds NF-κB and exportin which directs the complex to the cytoplasm. Although importins/exportins are known to regulate spatiotemporal kinetics of NF-κB and other transcription factors governing innate immunity, the mechanistic details of these interactions have not been elucidated and mathematically modelled. Results Based on our quantitative experimental data, we pursue NF-κB system modelling by explicitly including NF-κB–importin and IκBα–exportin binding to show that the competition between importins and IκBα enables NF-κB nuclear translocation despite high levels of IκBα. These interactions reduce the effective relaxation time and allow the NF-κB regulatory pathway to respond to recurrent TNFα pulses of 45-min period, which is about twice shorter than the characteristic period of NF-κB oscillations. By stochastic simulations of model dynamics we demonstrate that randomly appearing, short TNFα pulses can be converted to essentially digital pulses of NF-κB activity, provided that intervals between input pulses are not shorter than 1 h. Conclusions By including interactions involving importin-α and exportin we bring the modelling of spatiotemporal kinetics of transcription factors to a more mechanistic level. Basing on the analysis of the pursued model we estimated the information transmission rate of the NF-κB pathway as 1 bit per hour. Reviewers This article was reviewed by Marek Kimmel, James Faeder and William Hlavacek. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0164-z) contains supplementary material.

Details

ISSN :
17456150
Volume :
11
Database :
OpenAIRE
Journal :
Biology Direct
Accession number :
edsair.doi.dedup.....b6b9cb7dded6579bf8ac94b233c7dda5