Back to Search Start Over

Detection of a persistent meteoric metal layer in the Martian atmosphere

Authors :
John M. C. Plane
J. S. Evans
John Clarke
Justin Deighan
Nicholas M. Schneider
Bruce M. Jakosky
Arnaud Stiepen
J. D. Carrillo-Sánchez
Gregory M. Holsclaw
Roger V. Yelle
A. I. F. Stewart
Franck Montmessin
Sonal Jain
Matteo Crismani
William E. McClintock
Michael Chaffin
Laboratory for Atmospheric and Space Physics [Boulder] (LASP)
University of Colorado [Boulder]
School of Chemistry [Leeds]
University of Leeds
Computational Physics, Inc.
Lunar and Planetary Laboratory [Tucson] (LPL)
University of Arizona
Center for Space Physics [Boston] (CSP)
Boston University [Boston] (BU)
Space Sciences, Technologies and Astrophysics Research Institute (STAR)
Université de Liège
Laboratoire de Physique Atmosphérique et Planétaire (LPAP)
PLANETO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nature Geoscience, Nature Geoscience, 2017, 10, pp.401-404. ⟨10.1038/ngeo2958⟩, Nature Geoscience, Nature Publishing Group, 2017, 10, pp.401-404. ⟨10.1038/ngeo2958⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; Interplanetary dust particles sporadically enter planetary atmospheres at orbital velocities and ablate as collisions occur with ambient gases to produce a persistent layer of metallic atoms (for example, Fe, Mg, Na) in their upper atmospheres. Such layers are well studied at Earth, but have not been directly detected elsewhere in the Solar System. Here we report the detection of a meteoric layer consisting of Mg+ ions near an altitude of 90 km in the Martian atmosphere from ultraviolet remote sensing observations by NASA’s MAVEN spacecraft. We observe temporal variability in the Mg+ layer over the course of a Martian year, moving up and down in altitude seasonally and in response to dust storms, and displaying diurnal fluctuations in density. We also find that most meteor showers do not significantly perturb this layer, which constrains the fluence of eleven observed Martian meteor showers to less than our estimated global dust flux. The persistence and variability of the Mg+ layer are difficult to explain with existing models and reconcile with other transient layers of ions observed in the Martian ionosphere. We suggest that the transient layers are not sourced from the persistent Mg+ layer and thus not derived from meteoric material, but are ambient ions produced by some unknown mechanism.

Details

Language :
English
ISSN :
17520894
Database :
OpenAIRE
Journal :
Nature Geoscience, Nature Geoscience, 2017, 10, pp.401-404. ⟨10.1038/ngeo2958⟩, Nature Geoscience, Nature Publishing Group, 2017, 10, pp.401-404. ⟨10.1038/ngeo2958⟩
Accession number :
edsair.doi.dedup.....b69ffd5b9ffcf3a74c2e45beb2c24446
Full Text :
https://doi.org/10.1038/ngeo2958⟩