Back to Search Start Over

Discovery and characterization of five new eclipsing AM CVn systems

Authors :
S. R. Kulkarni
S Wong
Reed Riddle
J. van Roestel
Lars Bildsten
Dmitry A. Duev
S. P. Littlefair
David Goldstein
R. R. Laher
Kevin B. Burdge
T. A. Prince
M. J. Green
Christoffer Fremling
Thomas Kupfer
Matthew J. Graham
V. S. Dhillon
Eric C. Bellm
T. R. Marsh
B. Rusholme
Richard Dekany
Paula Szkody
Michael W. Coughlin
Source :
Monthly Notices of the Royal Astronomical Society. 512:5440-5461
Publication Year :
2021
Publisher :
Oxford University Press (OUP), 2021.

Abstract

AM CVn systems are ultra-compact, helium-rich, accreting binaries with degenerate or semi-degenerate donors. We report the discovery of five new eclipsing AM CVn systems with orbital periods of 61.5, 55.5, 53.3, 37.4, and 35.4 minutes. These systems were discovered by searching for deep eclipses in the Zwicky Transient Facility (ZTF) lightcurves of white dwarfs selected using Gaia parallaxes. We obtained phase-resolved spectroscopy to confirm that all systems are AM CVn binaries, and we obtained high-speed photometry to confirm the eclipse and characterize the systems. The spectra of two long-period systems (61.5 and 53.3 minutes) show many emission and absorption lines, indicating the presence of N, O, Na, Mg, Si, and Ca, and also the K and Zn, elements which have never been detected in AM CVn systems before. By modelling the high-speed photometry, we measured the mass and radius of the donor star, potentially constraining the evolutionary channel that formed these AM CVn systems. We determined that the average mass of the accreting white dwarf is $\approx0.8$$\mathrm{M_{\odot}}$, and that the white dwarfs in long-period systems are hotter than predicted by recently updated theoretical models. The donors have a high entropy and are a factor of $\approx$ 2 more massive compared to zero-entropy donors at the same orbital period. The large donor radius is most consistent with He-star progenitors, although the observed spectral features seem to contradict this. The discovery of 5 new eclipsing AM~CVn systems is consistent with the known observed AM CVn space density and estimated ZTF recovery efficiency. Based on this estimate, we expect to find another 1--4 eclipsing AM CVn systems as ZTF continues to obtain data. This will further increase our understanding of the population, but will require high precision data to better characterize these 5 systems and any new discoveries.<br />Comment: submitted to MNRAS

Details

ISSN :
13652966 and 00358711
Volume :
512
Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society
Accession number :
edsair.doi.dedup.....b69597354be951c4f49c39c3e65f77c8