Back to Search Start Over

Sharp feature preserving MLS surface reconstruction based on local feature line approximations

Authors :
Georges-Pierre Bonneau
Hans Hagen
Stefanie Hahmann
Christopher Weber
Department of Computer Science [Kaiserslautern]
Technische Universität Kaiserslautern (TU Kaiserslautern)
Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE)
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Models and Algorithms for Visualization and Rendering (MAVERICK)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Source :
Graphical Models, Graphical Models, Elsevier, 2012, 74 (6), pp.335-345. ⟨10.1016/j.gmod.2012.04.012⟩, Graphical Models, 2012, 74 (6), pp.335-345. ⟨10.1016/j.gmod.2012.04.012⟩
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

Graphical abstractDisplay Omitted Highlights? Use of local feature line approximation for MLS with sharp feature reconstruction. ? Feature reconstruction by segmentation and up-sampling of local neighborhoods along feature curves. ? Capable to handle sharp line-type features and corner features. ? Full automatic sharp feature detection as preprocess speeds up iterative reconstructions. Sharp features in manufactured and designed objects require particular attention when reconstructing surfaces from unorganized scan point sets using moving least squares (MLS) fitting. It is an inherent property of MLS fitting that sharp features are smoothed out. Instead of searching for appropriate new fitting functions our approach computes a modified local point neighborhood so that a standard MLS fitting can be applied enhanced by sharp features reconstruction.We present a two-stage algorithm. In a pre-processing step sharp feature points are marked first. This algorithm is robust to noise since it is based on Gauss map clustering. In the main phase, the selected feature points are used to locally approximate the feature curve and to segment and enhance the local point neighborhood. The MLS projection thus leads to a piecewise smooth surface preserving all sharp features. The method is simple to implement and able to preserve line-type features as well as corner-type features during reconstruction.

Details

ISSN :
15240703 and 15240711
Volume :
74
Database :
OpenAIRE
Journal :
Graphical Models
Accession number :
edsair.doi.dedup.....b6733c721ca6955661be653bc699961b
Full Text :
https://doi.org/10.1016/j.gmod.2012.04.012