Back to Search Start Over

Triplet Extended MSSM: Fine Tuning vs Perturbativity & Experiment

Authors :
Aslı Sabancı Keçeli
Katri Huitu
Stefano Di Chiara
Priyotosh Bandyopadhyay
Department of Physics
Helsinki Institute of Physics
Source :
Nuclear and Particle Physics Proceedings. :595-601
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Volume: 273 In this study we investigate the phenomenological viability of the Y = 0 Triplet Extended Supersymmetric Standard Model (TESSM) by comparing its predictions with the current Higgs data from ATLAS, CMS, and Tevatron, as well as the measured value of the B-S -> X-S gamma branching ratio. We scan numerically the parameter space for data points generating the measured particle mass spectrum and also satisfying current direct search constraints on new particles. We require all the couplings to be perturbative up to the scale A(UV) = 10(4) TeV, by running them with newly calculated two loop beta functions, and find that TESSM retains perturbativity as long as A, the triplet coupling to the two Higgs doublets, is smaller than 1.34 in absolute value. For vertical bar lambda vertical bar greater than or similar to 0.8 we show that the fine-tuning associated to each viable data point can be greatly reduced as compared to values attainable in MSSM. Finally, we perform a fit by taking into account 58 Higgs physics observables along with Br(B-s -> X-s gamma), for which we calculate the NLO prediction within TESSM. We find that, although naturality prefers a large vertical bar lambda vertical bar, the experimental data disfavors it compared to the small vertical bar lambda vertical bar region, because of the low energy observable Br(B-s -> X-s gamma).

Details

ISSN :
24056014
Database :
OpenAIRE
Journal :
Nuclear and Particle Physics Proceedings
Accession number :
edsair.doi.dedup.....b6635fe9a2f8b5968777764a981c1dca