Back to Search
Start Over
A parts list for fungal cellulosomes revealed by comparative genomics
- Source :
- Nature Microbiology, Nature Microbiology, 2017, 2, pp.17087. ⟨10.1038/nmicrobiol.2017.87⟩, Nature Microbiology, Nature Publishing Group, 2017, 2, pp.17087. ⟨10.1038/nmicrobiol.2017.87⟩, Nature microbiology, vol 2, iss 8, Nature Microbiology, 2, pp. 1-8, Haitjema, CH; Gilmore, SP; Henske, JK; Solomon, KV; De Groot, R; Kuo, A; et al.(2017). A parts list for fungal cellulosomes revealed by comparative genomics. Nature Microbiology, 2. doi: 10.1038/nmicrobiol.2017.87. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/6d7283vx, Nature Microbiology, 2, 1-8
- Publication Year :
- 2017
- Publisher :
- HAL CCSD, 2017.
-
Abstract
- © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Cellulosomes are large, multiprotein complexes that tether plant biomass-degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria, where species-specific dockerin domains mediate the assembly of enzymes onto cohesin motifs interspersed within protein scaffolds 1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic biology2,3. For decades, analogous structures have been reported in anaerobic fungi, which are known to assemble by sequence-divergent non-catalytic dockerin domains (NCDDs)4. However, the components, modular assembly mechanism and functional role of fungal cellulosomes remain unknown5,6. Here, we describe a comprehensive set of proteins critical to fungal cellulosome assembly, including conserved scaffolding proteins unique to the Neocallimastigomycota. High-quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single-molecule technology. Genomic analysis coupled with proteomic validation revealed an average of 312 NCDD-containing proteins per fungal strain, which were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across four genera that bind to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. However, the biocatalytic activity of anaerobic fungal cellulosomes is expanded by the inclusion of GH3, GH6 and GH45 enzymes. These findings suggest that the fungal cellulosome is an evolutionarily chimaeric structure - an independently evolved fungal complex that co-opted useful activities from bacterial neighbours within the gut microbiome.
- Subjects :
- 0301 basic medicine
Proteomics
[SDV]Life Sciences [q-bio]
Neocallimastigales
microbiome
Dockerin
approche protéomique
Applied Microbiology and Biotechnology
Cellulosome assembly
Cellulosome
Fungal genetics
neocallimastix
2.2 Factors relating to the physical environment
Aetiology
biology
Genomics
Cellulosomes
Infectious Diseases
Medical Microbiology
fungal genome
anaeromyces
Piromyces
Anaerobic bacteria
génome fongique
Infection
Biotechnology
Protein Binding
Microbiology (medical)
030106 microbiology
Immunology
Multienzyme complexes
Computational biology
Microbiology
Fungal Proteins
03 medical and health sciences
Genetics
analyse génomique
biomasse végétale
Comparative genomics
Cell Biology
biology.organism_classification
piromyces
030104 developmental biology
Neocallimastigomycota
cellulosome
Ecological Microbiology
génie génétique
Protein Multimerization
Subjects
Details
- Language :
- English
- ISSN :
- 20585276
- Database :
- OpenAIRE
- Journal :
- Nature Microbiology, Nature Microbiology, 2017, 2, pp.17087. ⟨10.1038/nmicrobiol.2017.87⟩, Nature Microbiology, Nature Publishing Group, 2017, 2, pp.17087. ⟨10.1038/nmicrobiol.2017.87⟩, Nature microbiology, vol 2, iss 8, Nature Microbiology, 2, pp. 1-8, Haitjema, CH; Gilmore, SP; Henske, JK; Solomon, KV; De Groot, R; Kuo, A; et al.(2017). A parts list for fungal cellulosomes revealed by comparative genomics. Nature Microbiology, 2. doi: 10.1038/nmicrobiol.2017.87. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/6d7283vx, Nature Microbiology, 2, 1-8
- Accession number :
- edsair.doi.dedup.....b62997e92ecac471590f574b0e5abc69