Back to Search Start Over

Coordinated inhibition of C/EBP by Tribbles in multiple tissues is essential for Caenorhabditis elegans development

Authors :
Christopher A. Piggott
Yishi Jin
Kyung Won Kim
Nishant Thakur
Nathalie Pujol
Jolanta Polanowska
Shizue Omi
Centre d'Immunologie de Marseille - Luminy (CIML)
Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Source :
BMC Biology, BMC Biology, BioMed Central, 2016, 14, ⟨10.1186/s12915-016-0320-z⟩, BMC biology, vol 14, iss 1, BMC Biology, 2016, 14, ⟨10.1186/s12915-016-0320-z⟩
Publisher :
Springer Nature

Abstract

Background Tribbles proteins are conserved pseudokinases that function to control kinase signalling and transcription in diverse biological processes. Abnormal function in human Tribbles has been implicated in a number of diseases including leukaemia, metabolic syndromes and cardiovascular diseases. Caenorhabditis elegans Tribbles NIPI-3 was previously shown to activate host defense upon infection by promoting the conserved PMK-1/p38 mitogen-activated protein kinase (MAPK) signalling pathway. Despite the prominent role of Tribbles proteins in many species, our knowledge of their mechanism of action is fragmented, and the in vivo functional relevance of their interactions with other proteins remains largely unknown. Results Here, by characterizing nipi-3 null mutants, we show that nipi-3 is essential for larval development and viability. Through analyses of genetic suppressors of nipi-3 null mutant lethality, we show that NIPI-3 negatively controls PMK-1/p38 signalling via transcriptional repression of the C/EBP transcription factor CEBP-1. We identified CEBP-1’s transcriptional targets by ChIP-seq analyses and found them to be enriched in genes involved in development and stress responses. Unlike its cell-autonomous role in innate immunity, NIPI-3 is required in multiple tissues to control organismal development. Conclusions Together, our data uncover an unprecedented crosstalk involving multiple tissues, in which NIPI-3 acts as a master regulator to inhibit CEBP-1 and the PMK-1/p38 MAPK pathway. In doing so, it keeps innate immunity in check and ensures proper organismal development. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0320-z) contains supplementary material, which is available to authorized users.

Details

Language :
English
ISSN :
17417007
Volume :
14
Issue :
1
Database :
OpenAIRE
Journal :
BMC Biology
Accession number :
edsair.doi.dedup.....b6263ed30c3b5874911ed2a5619f5a9e
Full Text :
https://doi.org/10.1186/s12915-016-0320-z