Back to Search
Start Over
ZNF367-induced transcriptional activation of KIF15 accelerates the progression of breast cancer
- Source :
- International Journal of Biological Sciences
- Publication Year :
- 2020
- Publisher :
- Ivyspring International Publisher, 2020.
-
Abstract
- Breast cancer (BC) is one of the most common female cancers, and its incidence has been increasing in recent years. Although treatments are continuously improving, the prognosis of patients in the advanced stage is still unsatisfactory. Thus, an in-depth understanding of its molecular mechanisms is necessary for curing breast cancer. KIF15 is a tetrameric spindle motor which can regulate mitosis in cellular process and exert the crucial functions in several cancers. The purpose of our research was to investigate the functions of KIF15 in breast cancer. We tested the expression of KIF15 in breast cancer tissues and the survival rate of breast cancer patients with high or low level of KIF15 through TCGA data. What's more, western blot and immunohistochemistry assay were utilized to evaluate the protein level and mRNA level of KIF15 in breast cancer tissues. Then CCK-8, wound healing, transwell and flow cytometry experiments were adopted separately to test cell viability, migration, invasion and cell cycle distribution. We discovered that KIF15 was highly expressed in breast cancer tissues and high level KIF15 was associated with a low survival rate of breast cancer patients. Moreover, silence of KIF15 suppressed cell viability, migration, invasion and cell cycle distribution. Following, we discovered that ZNF367 was the upstream transcription factor of KIF15. In addition, silenced ZNF367 could also repress the growth of breast cancer cells. And rescue experiments indicated that overexpressed KIF15 could counteract the inhibition effect of silencing ZNF367 on the progression of breast cancer. Importantly, we discovered that KIF15 and ZNF367 were associated with the regulation of cell cycle. In short, ZNF367-activated KIF15 accelerated the progression of breast cancer by regulating cell cycle progress.
- Subjects :
- Kruppel-Like Transcription Factors
Kinesins
Breast Neoplasms
Biology
Applied Microbiology and Biotechnology
Flow cytometry
03 medical and health sciences
KIF15
breast cancer
Breast cancer
Cell Line, Tumor
medicine
Humans
Gene silencing
Gene Silencing
Viability assay
Molecular Biology
Survival rate
Mitosis
Ecology, Evolution, Behavior and Systematics
030304 developmental biology
0303 health sciences
medicine.diagnostic_test
Cell Biology
Middle Aged
Cell cycle
medicine.disease
Gene Expression Regulation, Neoplastic
Cancer research
Immunohistochemistry
cell cycle
Female
ZNF367
Research Paper
Developmental Biology
Subjects
Details
- ISSN :
- 14492288
- Volume :
- 16
- Database :
- OpenAIRE
- Journal :
- International Journal of Biological Sciences
- Accession number :
- edsair.doi.dedup.....b5e74cabf882552dc8d53bb570079e7c
- Full Text :
- https://doi.org/10.7150/ijbs.44204