Back to Search Start Over

Printing of Hydrophobic Materials in Fumed Silica Nanoparticle Suspension

Authors :
Kaidong Song
Yong Huang
Gellermann Nevada J
Yifei Jin
Source :
ACS Applied Materials & Interfaces. 11:29207-29217
Publication Year :
2019
Publisher :
American Chemical Society (ACS), 2019.

Abstract

Freeform three-dimensional (3D) printing of functional structures from liquid hydrophobic build materials is of great significance and widely used in various fields such as soft robotics and microfluidics. In particular, a yield-stress support bath-enabled 3D-printing methodology has been emerging to fabricate complex 3D structures. Unfortunately, the reported support bath materials are either hydrophobic or not versatile enough for the printing of a wide range of hydrophobic materials. The objective of this study is to propose a fumed silica nanoparticle-based yield-stress suspension as a hydrophobic support bath to enable 3D extrusion printing of various hydrophobic ink materials in a printing-then-solidification fashion. Hydrophobic ink is freeform-deposited in a hydrophobic fumed silica-mineral oil suspension and maintains its shape during printing; it is not cured until the whole structure is complete. Various hydrophobic inks including poly(dimethylsiloxane) (PDMS), SU-8 resin, and epoxy-based conductive ink are printed into complex 3D structures in the fumed silica-mineral oil bath and then cured using relevant cross-linking mechanisms, even at a temperature as high as 90 °C, to prove the feasibility and versatility of the proposed printing approach. In addition, the deposited feature can easily reach a much better resolution such as 30 μm for PDMS filaments due to the negligible interfacial tension effect.

Details

ISSN :
19448252 and 19448244
Volume :
11
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....b5e4817dcb77029dcf1198fbaf41f9d3