Back to Search
Start Over
Transgenic overexpression of GLUT1 in mouse glomeruli produces renal disease resembling diabetic glomerulosclerosis
- Source :
- American Journal of Physiology-Renal Physiology. 299:F99-F111
- Publication Year :
- 2010
- Publisher :
- American Physiological Society, 2010.
-
Abstract
- Previous work identified an important role for hyperglycemia in diabetic nephropathy (The Diabetes Control and Complications Trial Research Group. N Engl J Med 329: 977–986, 1993; UK Prospective Diabetes Study Group. Lancet 352: 837–853, 1998), and increased glomerular GLUT1 has been implicated. However, the roles of GLUT1 and intracellular glucose have not been determined. Here, we developed transgenic GLUT1-overexpressing mice (GT1S) to characterize the roles of GLUT1 and intracellular glucose in the development of glomerular disease without diabetes. GLUT1 was overexpressed in glomerular mesangial cells (MC) of C57BL6 mice, a line relatively resistant to diabetic nephropathy. Blood pressure, blood glucose, glomerular morphometry, matrix proteins, cell signaling, transcription factors, and selected growth factors were examined. Kidneys of GT1S mice overexpressed GLUT1 in glomerular MCs and small vessels, rather than renal tubules. GT1S mice were neither diabetic nor hypertensive. Glomerular GLUT1, glucose uptake, mean capillary diameter, and mean glomerular volume were all increased in the GT1S mice. Moderately severe glomerulosclerosis (GS) was established by 26 wk of age in GT1S mice, with increased glomerular type IV collagen and fibronectin. Modest increases in glomerular basement membrane thickness and albuminuria were detected with podocyte foot processes largely preserved, in the absence of podocyte GLUT1 overexpression. Activation of glomerular PKC, along with increased transforming growth factor-β1, VEGFR1, VEGFR2, and VEGF were all detected in glomeruli of GT1S mice, likely contributing to GS. The transcription factor NF-κB was also activated. Overexpression of glomerular GLUT1, mimicking the diabetic GLUT1 response, produced numerous features typical of diabetic glomerular disease, without diabetes or hypertension. This suggested GLUT1 may play an important role in the development of diabetic GS.
- Subjects :
- Blood Glucose
Vascular Endothelial Growth Factor A
Aging
endocrine system
medicine.medical_specialty
Physiology
Glomerular Mesangial Cell
Kidney Glomerulus
Blood Pressure
Mice, Transgenic
Podocyte foot
Biology
urologic and male genital diseases
Podocyte
Transforming Growth Factor beta1
Diabetic nephropathy
Mice
Internal medicine
Glomerular Basement Membrane
medicine
Albuminuria
Animals
Humans
Diabetic Nephropathies
Cells, Cultured
Protein Kinase C
Glucose Transporter Type 1
Podocytes
urogenital system
Glomerular basement membrane
NF-kappa B
Glomerular mesangium
nutritional and metabolic diseases
Glomerulosclerosis
Glomerulonephritis
Articles
medicine.disease
Glomerular Mesangium
Up-Regulation
Mice, Inbred C57BL
carbohydrates (lipids)
medicine.anatomical_structure
Endocrinology
Mesangial Cells
Signal Transduction
Subjects
Details
- ISSN :
- 15221466 and 1931857X
- Volume :
- 299
- Database :
- OpenAIRE
- Journal :
- American Journal of Physiology-Renal Physiology
- Accession number :
- edsair.doi.dedup.....b5b7c8cd1a843f01b6511b92f90d586b