Back to Search
Start Over
Parameters for which the Griesmer bound is not sharp
- Source :
- Discrete Mathematics. (22):2695-2703
- Publisher :
- Elsevier B.V.
-
Abstract
- We prove for a large class of parameters t and r that a multiset of at most [email protected]"d"-"[email protected]"d"-"k"-"2 points in PG(d,q) that blocks every k-dimensional subspace at least t times must contain a sum of t subspaces of codimension k. We use our results to identify a class of parameters for linear codes for which the Griesmer bound is not sharp. Our theorem generalizes the non-existence results from Maruta [On the achievement of the Griesmer bound, Des. Codes Cryptogr. 12 (1997) 83-87] and Klein [On codes meeting the Griesmer bound, Discrete Math. 274 (2004) 289-297].
Details
- Language :
- English
- ISSN :
- 0012365X
- Issue :
- 22
- Database :
- OpenAIRE
- Journal :
- Discrete Mathematics
- Accession number :
- edsair.doi.dedup.....b58e3ca95547a19c3251d3bc01d96b9a
- Full Text :
- https://doi.org/10.1016/j.disc.2007.01.015