Back to Search
Start Over
FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease
- Source :
- Journal of Hepatology. 75:150-162
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Background & Aims Chronic endoplasmic reticulum (ER) stress in the liver has been shown to play a causative role in non-alcoholic fatty liver disease (NAFLD) progression, yet the underlying molecular mechanisms remain to be elucidated. Forkhead box A3 (FOXA3), a member of the FOX family, plays critical roles in metabolic homeostasis, although its possible functions in ER stress and fatty liver progression are unknown. Methods Adenoviral delivery, siRNA delivery, and genetic knockout mice were used to crease FOXA3 gain- or loss-of-function models. Tunicamycin (TM) and a high-fat diet (HFD) were used to induce acute or chronic ER stress in mice. Chromatin immunoprecipiation (ChIP)-seq, luciferase assay, and adenoviral-mediated downstream gene manipulations were performed to reveal the transcriptional axis involved. Key axis protein levels in livers from healthy donors and patients with NAFLD were assessed via immunohistochemical staining. Results FOXA3 transcription is specifically induced by XBP1s upon ER stress. FOXA3 exacerbates the excessive lipid accumulation caused by the acute ER-inducer TM, whereas FOXA3 deficiency in hepatocytes and mice alleviates it. Importantly, FOXA3 deficiency in mice reduced diet-induced chronic ER stress, fatty liver, and insulin resistance. In addition, FOXA3 suppression via siRNA or adeno-associated virus delivery ameliorated the fatty liver phenotype in HFD-fed and db/db mice. Mechanistically, ChIP-Seq analysis revealed that FOXA3 directly regulates Period1 (Per1) transcription, which in turn promotes the expression of lipogenic genes, including Srebp1c, thus enhancing lipid synthesis. Of pathophysiological significance, FOXA3, PER1, and SREBP1c levels were increased in livers of obese mice and patients with NAFLD. Conclusion The present study identified FOXA3 as the bridging molecule that links ER stress and NAFLD progression. Our results highlighted the role of the XBP1s–FOXA3–PER1/Srebp1c transcriptional axis in the development of NAFLD and identified FOXA3 as a potential therapeutic target for fatty liver disease. Lay summary The molecular mechanisms linking endoplasmic reticulum stress to non-alcoholic fatty liver disease (NAFLD) progression remain undefined. Herein, via in vitro and in vivo analysis, we identified Forkhead box A3 (FOXA3) as a key bridging molecule. Of pathophysiological significance, FOXA3 protein levels were increased in livers of obese mice and patients with NAFLD, indicating that FOXA3 could be a potential therapeutic target in fatty liver disease.
- Subjects :
- X-Box Binding Protein 1
0301 basic medicine
medicine.medical_specialty
Mice
03 medical and health sciences
0302 clinical medicine
Insulin resistance
Non-alcoholic Fatty Liver Disease
Internal medicine
Drug Discovery
Animals
Humans
Medicine
Mice, Knockout
Hepatology
business.industry
Lipogenesis
Endoplasmic reticulum
Fatty liver
Lipid metabolism
Period Circadian Proteins
Endoplasmic Reticulum Stress
medicine.disease
030104 developmental biology
Endocrinology
Knockout mouse
Hepatocytes
Unfolded protein response
030211 gastroenterology & hepatology
FOXA3
Sterol Regulatory Element Binding Protein 1
business
Hepatocyte Nuclear Factor 3-gamma
Signal Transduction
Subjects
Details
- ISSN :
- 01688278
- Volume :
- 75
- Database :
- OpenAIRE
- Journal :
- Journal of Hepatology
- Accession number :
- edsair.doi.dedup.....b58a3f8aa0d527a2c8c9b70a498e2eee