Back to Search
Start Over
Tl concentration and its variation in a CsI(Tl) crystal for the CALIFA detector
- Source :
- Digital.CSIC. Repositorio Institucional del CSIC, instname
- Publication Year :
- 2020
- Publisher :
- Elsevier, 2020.
-
Abstract
- 9 pags., 6 figs.<br />One of the factors that can contribute to the resolution of long, doped inorganic scintillators used for nuclear spectroscopy is the variation of the dopant concentration over the length the detector crystal. In this work an investigation of such potential variations in one of the CsI(Tl) scintillators used in the calorimeter, CALIFA, of the RB experiment at FAIR, has been performed using particle induced X-ray emission. No statistically significant gradient in doping level was found along the long axis of the investigated sample crystal and the mean value of the Tl concentration was measured to be 0.0839(38)% by weight. This corresponds to a light output of 97.3 % relative to the maximum attainable light output according to previously published work. By taking the ±1σ bounds, the 3% statistical spread in the relative light output provides a good reference value of the minimum light-output non-uniformity observed for the CALIFA crystals. If the relative light output is estimated pointwise from a set of Tl concentration measurements a light-output non-uniformity of 4.6(2.4)% results. For a γ-ray energy of 662 keV the deduced variation in Tl concentration contributes with 0.48(6)% to the typical resolution of 7.74(6)% measured with a collimated source along the crystal main axis. The result is of interest for the characterization of the detector system performance and for realistic simulations of the light collection process in detector systems that are used for nuclear spectroscopy and calorimetry.<br />This work was supported by the Swedish research council (VR) grants 2017-03986, 2014-06644, 2013-04178, 2012-04550, BMBF contracts 05P15WOFNA, 05P19WOFN1, 05P15RDFN1, 05P19RDFN1, the TU Darmstadt – GSI cooperation contract HIC for FAIR, by the Spanish National Research Council, Spain grants FPA02015-64969-P (MINDECO/FEDER/EU), FPA2015-69640-C2-1-P, PGC2018-099746-B-C21, MDM-2016.0692 (MINECO/FEDER/EU) and by GRC, Germany ED431C 2017/54 (Xunta de Galicia/FEDER/EU).
- Subjects :
- Physics
Nuclear reaction
Nuclear and High Energy Physics
Dopant
010308 nuclear & particles physics
Detector
Analytical chemistry
Calorimetry
Scintillator
01 natural sciences
Collimated light
Calorimeter
Crystal
CsI(Tl) energy resolution
Calorimeters
Scintillators
0103 physical sciences
Nuclear reactions
010306 general physics
Instrumentation
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Digital.CSIC. Repositorio Institucional del CSIC, instname
- Accession number :
- edsair.doi.dedup.....b55ec6e777828f78ce1296678b910a38