Back to Search Start Over

A framework for detecting noncoding rare variant associations of large-scale whole-genome sequencing studies

Authors :
Adolfo Correa
Corbin Quick
Jennifer A. Brody
Daniel E. Weeks
Rounak Dey
Joanne E. Curran
Charles Kooperberg
Wei Zhao
Brian G. Kral
Lisa W. Martin
Christen J. Willer
Donald W. Bowden
Eric Boerwinkle
Theodore Arapoglou
Joshua C. Bis
Barry I. Freedman
Leslie A. Lange
Ryan Sun
James G. Wilson
Lawrence F. Bielak
May E. Montasser
Kent D. Taylor
Jerome I. Rotter
Ramachandran S. Vasan
L. Adrienne Cupples
Rita R. Kalyani
Hufeng Zhou
Ani Manichaikul
John Blangero
Han Chen
Patricia A. Peyser
Stephen S. Rich
Brian E. Cade
Sheila M. Gaynor
Paul S. de Vries
Xihong Lin
Susan Redline
Thomas W. Blackwell
Margaret Sunitha Selvaraj
Jeffrey R. O'Connell
Xihao Li
Bruce M. Psaty
Ravindranath Duggirala
Matthew P. Conomos
Kenneth Rice
Donna K. Arnett
Muagututi‘a Sefuiva Reupena
Alanna C. Morrison
Nicholette D. Palmer
Jennifer A. Smith
Harald H H Göring
Alexander P. Reiner
Lisa R. Yanek
Braxton D. Mitchell
Laura M. Raffield
Yaowu Liu
Xiuqing Guo
Gina M. Peloso
Zilin Li
Pradeep Natarajan
Take Naseri
Source :
Nature methods, vol 19, iss 12
Publication Year :
2021
Publisher :
Cold Spring Harbor Laboratory, 2021.

Abstract

Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare variants’ (RVs) associations with complex human traits. Variant set analysis is a powerful approach to study RV association, and a key component of it is constructing RV sets for analysis. However, existing methods have limited ability to define analysis units in the noncoding genome. Furthermore, there is a lack of robust pipelines for comprehensive and scalable noncoding RV association analysis. Here we propose a computationally-efficient noncoding RV association-detection framework that uses STAAR (variant-set test for association using annotation information) to group noncoding variants in gene-centric analysis based on functional categories. We also propose SCANG (scan the genome)-STAAR, which uses dynamic window sizes and incorporates multiple functional annotations, in a non-gene-centric analysis. We furthermore develop STAARpipeline to perform flexible noncoding RV association analysis, including gene-centric analysis as well as fixed-window-based and dynamic-window-based non-gene-centric analysis. We apply STAARpipeline to identify noncoding RV sets associated with four quantitative lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several noncoding RV associations in an additional 9,123 TOPMed samples.

Details

Database :
OpenAIRE
Journal :
Nature methods, vol 19, iss 12
Accession number :
edsair.doi.dedup.....b5484ee33a5c3b1fd6316927ca1ba042
Full Text :
https://doi.org/10.1101/2021.11.05.467531