Back to Search Start Over

Methylprednisolone Attenuates Lipopolysaccharide-Induced Sepsis by Modulating the Small Nucleolar RNA Host Gene 5/Copine 1 Pathway

Authors :
Liang Tang
Wei Tan
Ping Jiang
Hanqing Yu
Li Zhang
Jin-ming Liu
Shanmei Wang
Yu Chen
Xinmiao Song
Source :
DNA and Cell Biology. 40:1396-1406
Publication Year :
2021
Publisher :
Mary Ann Liebert Inc, 2021.

Abstract

Sepsis has become a major public health problem worldwide. Methylprednisolone sodium succinate (MP) is a commonly used drug to prevent inflammation. However, the role and underlying mechanism of MP in sepsis remain vague. MP inhibited the lipopolysaccharide (LPS)-induced production of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-17 and suppressed cell growth in alveolar type II epithelial cells (ATII cells). Small nucleolar RNA host gene 5 (SNHG5) expression was inhibited by LPS and restored by MP. Upregulation of SNHG5 inhibited the cellular role of LPS in ATII cells, and further, downregulation of SNHG5 inhibited the cellular role of MP in ATII cells under LPS conditions. SNHG5 elevated the expression of Copine 1 (CPNE1) by enhancing the mRNA stability of CPNE1. Increasing CPNE1 expression restored the silenced SNHG5-induced inhibitor role of MP in ATII cells under LPS conditions. Finally, MP attenuated lung injury and TNF-α and IL-17 secretion in an LPS-induced sepsis mouse model. Overall, this study investigated the mechanism underlying the effect of MP treatment in sepsis and, for the first time, revealed the important role of the SNHG5/CPNE1 pathway in the development and treatment of sepsis and the potential to serve as a diagnostic and therapeutic target for sepsis.

Details

ISSN :
15577430 and 10445498
Volume :
40
Database :
OpenAIRE
Journal :
DNA and Cell Biology
Accession number :
edsair.doi.dedup.....b50d3d9b381d28969870c7e098877bde