Back to Search Start Over

Prediction of future healthcare expenses of patients from chest radiographs using deep learning: a pilot study

Authors :
Benjamin L. Franc
Thienkhai Vu
Jaewon Yang
Yixin Chen
Jae Ho Sohn
Dexter Hadley
Youngho Seo
Dmytro Lituiev
Karen G. Ordovas
Source :
Scientific reports, vol 12, iss 1
Publication Year :
2022
Publisher :
eScholarship, University of California, 2022.

Abstract

Our objective was to develop deep learning models with chest radiograph data to predict healthcare costs and classify top-50% spenders. 21,872 frontal chest radiographs were retrospectively collected from 19,524 patients with at least 1-year spending data. Among the patients, 11,003 patients had 3 years of cost data, and 1678 patients had 5 years of cost data. Model performances were measured with area under the receiver operating characteristic curve (ROC-AUC) for classification of top-50% spenders and Spearman ρ for prediction of healthcare cost. The best model predicting 1-year (N=21,872) expenditure achieved ROC-AUC of 0.806 [95% CI, 0.793-0.819] for top-50% spender classification and ρ of 0.561 [0.536-0.586] for regression. Similarly, for predicting 3-year (N=12,395) expenditure, ROC-AUC of 0.771 [0.750-0.794] and ρ of 0.524 [0.489-0.559]; for predicting 5-year (N=1,779) expenditure ROC-AUC of 0.729 [0.667-0.729] and ρ of 0.424 [0.324-0.529]. Our deep learning model demonstrated the feasibility of predicting health care expenditure as well as classifying top 50% healthcare spenders at 1, 3, and 5 year(s), implying the feasibility of combining deep learning with information-rich imaging data to uncover hidden associations that may allude physicians. Such a model can be a starting point of making an accurate budget in reimbursement models in healthcare industries.

Details

Database :
OpenAIRE
Journal :
Scientific reports, vol 12, iss 1
Accession number :
edsair.doi.dedup.....b4f1ce881060425f95fbdbaa5c69001d