Back to Search Start Over

Mechanism of dimerization and structural features of human LI-cadherin

Authors :
Daisuke Kuroda
Shuichiro Goda
Makoto Nakakido
Susumu Uchiyama
Jose M. M. Caaveiro
Satoru Nagatoishi
Takahiro Maruno
Kouhei Tsumoto
Anna Yui
Source :
The Journal of Biological Chemistry
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Liver intestine (LI)-cadherin is a member of the cadherin superfamily, which encompasses a group of Ca2+-dependent cell-adhesion proteins. The expression of LI-cadherin is observed on various types of cells in the human body, such as normal small intestine and colon cells, and gastric cancer cells. Because its expression is not observed on normal gastric cells, LI-cadherin is a promising target for gastric cancer imaging. However, because the cell adhesion mechanism of LI-cadherin has remained unknown, rational design of therapeutic molecules targeting this cadherin has been hampered. Here, we have studied the homodimerization mechanism of LI-cadherin. We report the crystal structure of the LI-cadherin homodimer containing its first four extracellular cadherin repeats (EC1-4). The EC1-4 homodimer exhibited a unique architecture different from that of other cadherins reported so far, driven by the interactions between EC2 of one protein chain and EC4 of the second protein chain. The crystal structure also revealed that LI-cadherin possesses a noncanonical calcium ion–free linker between the EC2 and EC3 domains. Various biochemical techniques and molecular dynamics simulations were employed to elucidate the mechanism of homodimerization. We also showed that the formation of the homodimer observed in the crystal structure is necessary for LI-cadherin–dependent cell adhesion by performing cell aggregation assays. Taken together, our data provide structural insights necessary to advance the use of LI-cadherin as a target for imaging gastric cancer.

Details

ISSN :
00219258
Volume :
297
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....b4dca16cf102885c60a98e2f3b5a4794