Back to Search
Start Over
Resonance Hyper-Raman Spectra of Zinc Phthalocyanine
- Source :
- The Journal of Physical Chemistry A. 112:5925-5929
- Publication Year :
- 2008
- Publisher :
- American Chemical Society (ACS), 2008.
-
Abstract
- Hyper-Raman spectra were obtained for zinc phthalocyanine in a dilute pyridine solution at excitation wavelengths that are two-photon resonant with the one-photon-allowed B band (360-380 nm) as well as with the two-photon absorption near 440 nm reported by Drobizhev et al. ( J. Chem. Phys. 2006, 124, 224701 ). In both regions, the hyper-Raman spectra were very different from the linear resonance Raman spectra at the corresponding excitation frequencies. While the resonance Raman spectra show only g symmetry modes, almost all of the hyper-Raman frequencies can be assigned as fundamentals of E u symmetry that also are observed in the infrared absorption spectrum or E u symmetry combination bands. These results contrast sharply with previous observations of highly noncentrosymmetric push-pull conjugated molecules and are consistent with a structure for phthalocyanine in solution that is centrosymmetric or nearly so. The hyper-Raman spectra show different intensity patterns in the two excitation regions, consistent with different Franck-Condon and/or vibronic coupling matrix elements for the different resonant states.
- Subjects :
- Pyridines
Analytical chemistry
Resonance
Infrared spectroscopy
B band
Spectrum Analysis, Raman
Spectral line
Absorption
chemistry.chemical_compound
symbols.namesake
chemistry
Organometallic Compounds
Phthalocyanine
symbols
Physical and Theoretical Chemistry
Absorption (chemistry)
Raman spectroscopy
Excitation
Subjects
Details
- ISSN :
- 15205215 and 10895639
- Volume :
- 112
- Database :
- OpenAIRE
- Journal :
- The Journal of Physical Chemistry A
- Accession number :
- edsair.doi.dedup.....b4c2908ceef30a3ddd25933891085d1d