Back to Search
Start Over
Power estimation for non-standardized multisite studies
- Source :
- Keshavan, A, Paul, F, Beyer, M K, Zhu, A H, Papinutto, N, Shinohara, R T, Stern, W, Amann, M, Bakshi, R, Bischof, A, Carriero, A, Comabella, M, Crane, J C, D'Alfonso, S, Demaerel, P, Dubois, B, Filippi, M, Fleischer, V, Fontaine, B, Gaetano, L, Goris, A, Graetz, C, Gröger, A, Groppa, S, Hafler, D A, Harbo, H F, Hemmer, B, Jordan, K, Kappos, L, Kirkish, G, Llufriu, S, Magon, S, Martinelli-Boneschi, F, McCauley, J L, Montalban, X, Mühlau, M, Pelletier, D, Pattany, P M, Pericak-Vance, M, Cournu-Rebeix, I, Rocca, M A, Rovira, A, Schlaeger, R, Saiz, A, Sprenger, T, Stecco, A, Uitdehaag, B M J, Villoslada, P, Wattjes, M P, Weiner, H, Wuerfel, J, Zimmer, C, Zipp, F, Hauser, S L, Oksenberg, J R, Henry, R G & International Multiple Sclerosis Genetics Consortium, M S G C 2016, ' Power estimation for non-standardized multisite studies ', NeuroImage, vol. 134, pp. 281-294 . https://doi.org/10.1016/j.neuroimage.2016.03.051, NeuroImage, NeuroImage, Elsevier, 2016, 134, ⟨10.1016/j.neuroimage.2016.03.051⟩, NeuroImage, 2016, 134, ⟨10.1016/j.neuroimage.2016.03.051⟩, NeuroImage, 134, 281-294. Academic Press Inc., Keshavan, A; Paul, F; Beyer, MK; Zhu, AH; Papinutto, N; Shinohara, RT; et al.(2016). Power estimation for non-standardized multisite studies. NEUROIMAGE, 134, 281-294. doi: 10.1016/j.neuroimage.2016.03.051. UC San Francisco: Retrieved from: http://www.escholarship.org/uc/item/8fb1g9s7
- Publication Year :
- 2016
-
Abstract
- A concern for researchers planning multisite studies is that scanner and T1-weighted sequence-related biases on regional volumes could overshadow true effects, especially for studies with a heterogeneous set of scanners and sequences. Current approaches attempt to harmonize data by standardizing hardware, pulse sequences, and protocols, or by calibrating across sites using phantom-based corrections to ensure the same raw image intensities. We propose to avoid harmonization and phantom-based correction entirely. We hypothesized that the bias of estimated regional volumes is scaled between sites due to the contrast and gradient distortion differences between scanners and sequences. Given this assumption, we provide a new statistical framework and derive a power equation to define inclusion criteria for a set of sites based on the variability of their scaling factors. We estimated the scaling factors of 20 scanners with heterogeneous hardware and sequence parameters by scanning a single set of 12 subjects at sites across the United States and Europe. Regional volumes and their scaling factors were estimated for each site using Freesurfer's segmentation algorithm and ordinary least squares, respectively. The scaling factors were validated by comparing the theoretical and simulated power curves, performing a leave-one-out calibration of regional volumes, and evaluating the absolute agreement of all regional volumes between sites before and after calibration. Using our derived power equation, we were able to define the conditions under which harmonization is not necessary to achieve 80% power. This approach can inform choice of processing pipelines and outcome metrics for multisite studies based on scaling factor variability across sites, enabling collaboration between clinical and research institutions. publisher: Elsevier articletitle: Power estimation for non-standardized multisite studies journaltitle: NeuroImage articlelink: http://dx.doi.org/10.1016/j.neuroimage.2016.03.051 content_type: article copyright: © 2016 The Authors. Published by Elsevier Inc. ispartof: NeuroImage vol:134 pages:281-294 ispartof: location:United States status: published
- Subjects :
- Computer science
Cognitive Neuroscience
computer.software_genre
Sensitivity and Specificity
050105 experimental psychology
Imaging phantom
Article
Set (abstract data type)
03 medical and health sciences
0302 clinical medicine
Distortion
Image Interpretation, Computer-Assisted
Calibration
medicine
[INFO.INFO-IM]Computer Science [cs]/Medical Imaging
Humans
0501 psychology and cognitive sciences
Segmentation
Computer Simulation
10. No inequality
Scaling
Models, Statistical
medicine.diagnostic_test
05 social sciences
Contrast (statistics)
Brain
Reproducibility of Results
Magnetic resonance imaging
Equipment Design
Scale factor
Image Enhancement
Magnetic Resonance Imaging
United States
Equipment Failure Analysis
Europe
Neurology
Ordinary least squares
Data mining
Function and Dysfunction of the Nervous System
Artifacts
computer
030217 neurology & neurosurgery
Algorithms
Subjects
Details
- Language :
- English
- ISSN :
- 10538119 and 10959572
- Database :
- OpenAIRE
- Journal :
- Keshavan, A, Paul, F, Beyer, M K, Zhu, A H, Papinutto, N, Shinohara, R T, Stern, W, Amann, M, Bakshi, R, Bischof, A, Carriero, A, Comabella, M, Crane, J C, D'Alfonso, S, Demaerel, P, Dubois, B, Filippi, M, Fleischer, V, Fontaine, B, Gaetano, L, Goris, A, Graetz, C, Gröger, A, Groppa, S, Hafler, D A, Harbo, H F, Hemmer, B, Jordan, K, Kappos, L, Kirkish, G, Llufriu, S, Magon, S, Martinelli-Boneschi, F, McCauley, J L, Montalban, X, Mühlau, M, Pelletier, D, Pattany, P M, Pericak-Vance, M, Cournu-Rebeix, I, Rocca, M A, Rovira, A, Schlaeger, R, Saiz, A, Sprenger, T, Stecco, A, Uitdehaag, B M J, Villoslada, P, Wattjes, M P, Weiner, H, Wuerfel, J, Zimmer, C, Zipp, F, Hauser, S L, Oksenberg, J R, Henry, R G & International Multiple Sclerosis Genetics Consortium, M S G C 2016, ' Power estimation for non-standardized multisite studies ', NeuroImage, vol. 134, pp. 281-294 . https://doi.org/10.1016/j.neuroimage.2016.03.051, NeuroImage, NeuroImage, Elsevier, 2016, 134, ⟨10.1016/j.neuroimage.2016.03.051⟩, NeuroImage, 2016, 134, ⟨10.1016/j.neuroimage.2016.03.051⟩, NeuroImage, 134, 281-294. Academic Press Inc., Keshavan, A; Paul, F; Beyer, MK; Zhu, AH; Papinutto, N; Shinohara, RT; et al.(2016). Power estimation for non-standardized multisite studies. NEUROIMAGE, 134, 281-294. doi: 10.1016/j.neuroimage.2016.03.051. UC San Francisco: Retrieved from: http://www.escholarship.org/uc/item/8fb1g9s7
- Accession number :
- edsair.doi.dedup.....b470765031e3e0cc097a9cc3797e7461