Back to Search Start Over

Intracellular Accumulation of Antithrombin Morioka(C95R), a Novel Mutation Causing Type I Antithrombin Deficiency

Authors :
Sadaki Yokota
Masashi Morita
Yu-ki Tanaka
Tetsuo Ozawa
Tsuneo Imanaka
Shoji Okamura
Nobuo Sakuragawa
Ryuichiro Sato
Kazue Ueda
Source :
Journal of Biological Chemistry. 277:51058-51067
Publication Year :
2002
Publisher :
Elsevier BV, 2002.

Abstract

Antithrombin (AT) is a major plasma protease inhibitor with three intramolecular disulfide bonds, and its deficiency is associated with increased venous thrombosis. Recently, we found a novel missense mutation named AT Morioka (C95R), which causes the loss of one of the three disulfide bonds. In this study, we prepared Chinese hamster ovary cells stably overexpressing wild type or mutant AT and examined the intracellular fate of the ATs. In pulse-chase experiments, newly synthesized wild type AT was secreted into the medium with a half-life of approximately 1.5 h. In contrast, most of the mutant type AT was not secreted during the chase period of 9 h and, surprisingly, was not degraded in the cells. The kinetics of the secretion suggests that the mutant was secreted about 50 times more slowly into the medium. Most of the mutant AT in the cells had high mannose type oligosaccharides, suggesting that it was retained in the endoplasmic reticulum (ER). In addition, half of the mutant AT existed in a dimeric form with an intermolecular disulfide bond. On immunoelectron microscopy, the mutant AT was found to have accumulated in variously sized structures surrounded by a single membrane in the cytoplasm. Immunogold particles exhibiting calnexin immunoreactivity were detected on the membranes. Ribosomes were attached to some of the small structures that had accumulated the mutant AT. Further, we prepared Chinese hamster ovary cells stably overexpressing another mutant AT in which two cysteine residues at 21 and 95, responsible for disulfide bond formation, were substituted for arginines. In pulse-chase experiments, the mutant AT (C21C,C95R) was secreted faster than that of AT Morioka (C95R) into the medium. These results suggest that AT Morioka remained for a long time in ER without being degraded and accumulated in newly formed membrane structures derived from the ER. The dimerization of AT Morioka (C95R) through Cys-21 seems to be critical for its intracellular accumulation.

Details

ISSN :
00219258
Volume :
277
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....b465a1122e0419273b4024e51a782cbd
Full Text :
https://doi.org/10.1074/jbc.m210231200