Back to Search Start Over

Node Centrality Measures Identify Relevant Structural MRI Features of Subjects with Autism

Authors :
Sara Calderoni
Giulia Menichetti
Daniel Remondini
Alessandra Retico
Marcello Zanghieri
Gastone Castellani
Zanghieri M.
Menichetti G.
Retico A.
Calderoni S.
Castellani G.
Remondini D.
Source :
Brain Sciences, Brain Sciences, Vol 11, Iss 498, p 498 (2021), Volume 11, Issue 4
Publication Year :
2021

Abstract

Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental conditions characterized by impairments in social interaction and communication and restricted patterns of behavior, interests, and activities. Although the etiopathogenesis of idiopathic ASD has not been fully elucidated, compelling evidence suggests an interaction between genetic liability and environmental factors in producing early alterations of structural and functional brain development that are detectable by magnetic resonance imaging (MRI) at the group level. This work shows the results of a network-based approach to characterize not only variations in the values of the extracted features but also in their mutual relationships that might reflect underlying brain structural differences between autistic subjects and healthy controls. We applied a network-based analysis on sMRI data from the Autism Brain Imaging Data Exchange I (ABIDE-I) database, containing 419 features extracted with FreeSurfer software. Two networks were generated: one from subjects with autistic disorder (AUT) (DSM-IV-TR), and one from typically developing controls (TD), adopting a subsampling strategy to overcome class imbalance (235 AUT, 418 TD). We compared the distribution of several node centrality measures and observed significant inter-class differences in averaged centralities. Moreover, a single-node analysis allowed us to identify the most relevant features that distinguished the groups.

Details

ISSN :
20763425
Database :
OpenAIRE
Journal :
Brain Sciences
Accession number :
edsair.doi.dedup.....b4519361521cb7e55d7d9ec673439b19
Full Text :
https://doi.org/10.3390/brainsci11040498