Back to Search
Start Over
Arterial stiffness induces remodeling phenotypes in pulmonary artery smooth muscle cells via YAP/TAZ-mediated repression of cyclooxygenase-2
- Source :
- American Journal of Physiology-Lung Cellular and Molecular Physiology. 313:L628-L647
- Publication Year :
- 2017
- Publisher :
- American Physiological Society, 2017.
-
Abstract
- Pulmonary arterial stiffness is an independent risk factor for mortality in pulmonary hypertension (PH) and plays a critical role in PH pathophysiology. Our laboratory has recently demonstrated arterial stiffening early in experimental PH, along with evidence for a mechanobiological feedback loop by which arterial stiffening promotes further cellular remodeling behaviors (Liu F, Haeger CM, Dieffenbach PB, Sicard D, Chrobak I, Coronata AM, Suárez Velandia MM, Vitali S, Colas RA, Norris PC, Marinković A, Liu X, Ma J, Rose CD, Lee SJ, Comhair SA, Erzurum SC, McDonald JD, Serhan CN, Walsh SR, Tschumperlin DJ, Fredenburgh LE. JCI Insight 1: e86987, 2016). Cyclooxygenase-2 (COX-2) and prostaglandin signaling have been implicated in stiffness-mediated regulation, with prostaglandin activity inversely correlated to matrix stiffness and remodeling behaviors in vitro, as well as to disease progression in rodent PH models. The mechanism by which mechanical signaling translates to reduced COX-2 activity in pulmonary vascular cells is unknown. The present work investigated the transcriptional regulators Yes-associated protein (YAP) and WW domain-containing transcription regulator 1 (WWTR1, a.k.a., TAZ), which are known drivers of downstream mechanical signaling, in mediating stiffness-induced changes in COX-2 and prostaglandin activity in pulmonary artery smooth muscle cells (PASMCs). We found that YAP/TAZ activity is increased in PAH PASMCs and experimental PH and is necessary for the development of stiffness-dependent remodeling phenotypes. Knockdown of YAP and TAZ markedly induces COX-2 expression and downstream prostaglandin production by approximately threefold, whereas overexpression of YAP or TAZ reduces COX-2 expression and prostaglandin production to near undetectable levels. Together, our findings demonstrate a stiffness-dependent YAP/TAZ-mediated positive feedback loop that drives remodeling phenotypes in PASMCs via reduced COX-2 and prostaglandin activity. The ability to interrupt this critical mechanobiological feedback loop and enhance local prostaglandin activity via manipulation of YAP/TAZ signaling presents a highly attractive novel strategy for the treatment of PH.
- Subjects :
- Male
0301 basic medicine
Physiology
WWTR1
030204 cardiovascular system & hematology
Rats, Sprague-Dawley
Extracellular matrix
chemistry.chemical_compound
0302 clinical medicine
Cell Movement
Gene knockdown
biology
Chemistry
Intracellular Signaling Peptides and Proteins
Middle Aged
Extracellular Matrix
Cell biology
Phenotype
Gene Knockdown Techniques
Airway Remodeling
Female
Signal transduction
Research Article
Signal Transduction
Adult
Pulmonary and Respiratory Medicine
medicine.medical_specialty
Hypertension, Pulmonary
Myocytes, Smooth Muscle
Prostaglandin
Pulmonary Artery
03 medical and health sciences
Vascular Stiffness
Physiology (medical)
Internal medicine
medicine
Animals
Humans
Adaptor Proteins, Signal Transducing
Cell Proliferation
Demography
Cell growth
YAP-Signaling Proteins
Cell Biology
Phosphoproteins
medicine.disease
Pulmonary hypertension
030104 developmental biology
Endocrinology
Cyclooxygenase 2
Transcriptional Coactivator with PDZ-Binding Motif Proteins
Trans-Activators
biology.protein
Cyclooxygenase
Apoptosis Regulatory Proteins
Transcription Factors
Subjects
Details
- ISSN :
- 15221504 and 10400605
- Volume :
- 313
- Database :
- OpenAIRE
- Journal :
- American Journal of Physiology-Lung Cellular and Molecular Physiology
- Accession number :
- edsair.doi.dedup.....b449ae2d961ff67e87c9216db39e401a
- Full Text :
- https://doi.org/10.1152/ajplung.00173.2017