Back to Search Start Over

The medial orbitofrontal cortex governs reward-related circuits in an age-dependent manner

Authors :
Maxine K Loh
J Amiel Rosenkranz
Source :
Cereb Cortex
Publication Year :
2022
Publisher :
Oxford University Press (OUP), 2022.

Abstract

Nucleus accumbens (NAc) neurons integrate excitatory inputs from cortical and limbic structures, contributing to critical cognitive functions, including decision-making. As these afferents mature from adolescence through adulthood, incoming signals to the NAc may summate differently between age groups. Decision-making evaluates both reward and risk before action selection, suggesting an interplay between reward- and risk-related circuits. Medial orbitofrontal cortex (MO)-NAc circuits permit risk assessment behaviors and likely underlie risk information incorporation. As adolescents make reward-centric choices regardless of risk, we hypothesized the impact of MO activity alters reward-related NAc circuits in an age-dependent manner. To test this hypothesis, we used single-unit electrophysiology to measure MO train stimulation’s effect on reward-related pathways, specifically the basolateral amygdala (BLA)-NAc circuit, in adult and adolescent rats. MO train stimulation altered the strength but not the timing of BLA–NAc interactions in a frequency-dependent manner. In adults, MO train stimulation produced a frequency-dependent, bidirectional effect on BLA-evoked NAc AP probability. Contrastingly, MO train stimulation uniformly attenuated BLA-NAc interactions in adolescents. While the mature MO can govern reward-related circuits in an activity-dependent manner, perhaps to adapt to positive or negative decision-making outcomes, the adolescent MO may be less able to bidirectionally impact reward-related pathways resulting in biased decision-making.

Details

ISSN :
14602199 and 10473211
Volume :
33
Database :
OpenAIRE
Journal :
Cerebral Cortex
Accession number :
edsair.doi.dedup.....b440bb6af66228ca411ddd05a8d11240
Full Text :
https://doi.org/10.1093/cercor/bhac182