Back to Search Start Over

A dual finite element complex on the barycentric refinement

Authors :
Annalisa Buffa
Snorre H. Christiansen
Source :
Scopus-Elsevier, 340 (2005): 461–464., info:cnr-pdr/source/autori:Buffa A., Christiansen S.H./titolo:A dual finite element complex on the barycentric refinement/doi:/rivista:/anno:2005/pagina_da:461/pagina_a:464/intervallo_pagine:461–464/volume:340, ResearcherID, Mathematics of computation 76 (2007): 1743–1769. doi:10.1090/S0025-5718-07-01965-5, info:cnr-pdr/source/autori:Buffa A.; Christiansen S.H./titolo:A dual finite element complex on the barycentric refinement/doi:10.1090%2FS0025-5718-07-01965-5/rivista:Mathematics of computation/anno:2007/pagina_da:1743/pagina_a:1769/intervallo_pagine:1743–1769/volume:76
Publication Year :
2007
Publisher :
American Mathematical Society (AMS), 2007.

Abstract

Given a two dimensional oriented surface equipped with a simplicial mesh, the standard lowest order finite element spaces provide a complex X center dot centered on Raviart-Thomas divergence conforming vector fields. It can be seen as a realization of the simplicial cochain complex. We construct a new complex Y center dot of finite element spaces on the barycentric refinement of the mesh which can be seen as a realization of the simplicial chain complex on the original (unrefined) mesh, such that the L-2 duality is non-degenerate on Y-i x X2-i for each i epsilon {0, 1, 2}. In particular Y-1 is a space of curl-conforming vector fields which is L2 dual to Raviart-Thomas div-conforming elements. When interpreted in terms of differential forms, these two complexes provide a finite-dimensional analogue of Hodge duality.

Details

ISSN :
00255718
Volume :
76
Database :
OpenAIRE
Journal :
Mathematics of Computation
Accession number :
edsair.doi.dedup.....b425ef785157045dc046b0af22fb0a6b