Back to Search Start Over

Proving Positive Almost-Sure Termination

Authors :
Olivier Bournez
Florent Garnier
Constraints, automatic deduction and software properties proofs (PROTHEO)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Jürgen Giesl
Source :
16th International Conference on Rewriting Techniques and Applications-RTA'2005, 16th International Conference on Rewriting Techniques and Applications-RTA'2005, Apr 2005, Nara/Japan, pp.323-337, ⟨10.1007/b135673⟩, [Intern report] A04-R-409 || bournez04h, 2004, 16 p, Lecture Notes in Computer Science ISBN: 9783540255963, RTA
Publication Year :
2005
Publisher :
HAL CCSD, 2005.

Abstract

Rapport interne.; In order to extend the modeling capabilities of rewriting systems, it is rather natural to consider that the firing of rules can be subject to some probabilistic laws. Considering rewrite rules subject to probabilities leads to numerous questions about the underlying notions and results. We focus here on the problem of termination of a set of probabilistic rewrite rules. A probabilistic rewrite system is said almost surely terminating if the probability that a derivation leads to a normal form is one. Such a system is said positively almost surely terminating if furthermore the mean length of a derivation is finite. We provide several results and techniques in order to prove positive almost sure termination of a given set of probabilistic rewrite rules. All these techniques subsume classical ones for non-probabilistic systems.

Details

Language :
English
ISBN :
978-3-540-25596-3
ISBNs :
9783540255963
Database :
OpenAIRE
Journal :
16th International Conference on Rewriting Techniques and Applications-RTA'2005, 16th International Conference on Rewriting Techniques and Applications-RTA'2005, Apr 2005, Nara/Japan, pp.323-337, ⟨10.1007/b135673⟩, [Intern report] A04-R-409 || bournez04h, 2004, 16 p, Lecture Notes in Computer Science ISBN: 9783540255963, RTA
Accession number :
edsair.doi.dedup.....b423cf574c070be755f16d61965a5cc3
Full Text :
https://doi.org/10.1007/b135673⟩