Back to Search
Start Over
Regular extensions and algebraic relations between values of Mahler functions in positive characteristic
- Source :
- Transactions of the American Mathematical Society, Transactions of the American Mathematical Society, American Mathematical Society, In press
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- Let K \mathbb {K} be a function field of characteristic p > 0 p>0 . We have recently established the analogue of a theorem of Ku. Nishioka for linear Mahler systems defined over K ( z ) \mathbb {K}(z) . This paper is dedicated to proving the following refinement of this theorem. Let f 1 ( z ) , … , f n ( z ) f_{1}(z),\ldots , f_{n}(z) be d d -Mahler functions such that K ¯ ( z ) ( f 1 ( z ) , … , f n ( z ) ) \overline {\mathbb {K}}(z)\left (f_{1}(z),\ldots , f_{n}(z)\right ) is a regular extension over K ¯ ( z ) \overline {\mathbb {K}}(z) . Then, every homogeneous algebraic relation over K ¯ \overline {\mathbb {K}} between their values at a regular algebraic point arises as the specialization of a homogeneous algebraic relation over K ¯ ( z ) \overline {\mathbb {K}}(z) between these functions themselves. If K \mathbb {K} is replaced by a number field, this result is due to B. Adamczewski and C. Faverjon as a consequence of a theorem of P. Philippon. The main difference is that in characteristic zero, every d d -Mahler extension is regular, whereas in characteristic p p , non-regular d d -Mahler extensions do exist. Furthermore, we prove that the regularity of the field extension K ¯ ( z ) ( f 1 ( z ) , … , f n ( z ) ) \overline {\mathbb {K}}(z)\left (f_{1}(z),\ldots , f_{n}(z)\right ) is also necessary for our refinement to hold. Besides, we show that when p ∤ d p\nmid d , d d -Mahler extensions over K ¯ ( z ) \overline {\mathbb {K}}(z) are always regular. Finally, we describe some consequences of our main result concerning the transcendence of values of d d -Mahler functions at algebraic points.
- Subjects :
- Pure mathematics
Mathematics - Number Theory
Applied Mathematics
General Mathematics
010102 general mathematics
Zero (complex analysis)
Extension (predicate logic)
Algebraic number field
01 natural sciences
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
Regular extension
Field extension
FOS: Mathematics
Number Theory (math.NT)
Algebraic independence
0101 mathematics
Algebraic number
Function field
Mathematics
Subjects
Details
- Language :
- English
- ISBN :
- 978-0-387-94268-1
978-0-85312-391-0
978-0-387-90244-9
978-0-387-95385-4
978-3-540-61472-2
978-3-11-011568-0
978-0-387-09493-9
0-387-94268-8
0-85312-391-8
0-387-90244-9
0-387-95385-X
3-540-61472-9
3-11-011568-9 - ISSN :
- 00029947, 12467405, 00246115, 00246093, 00129593, 0003486X, 02636115, 00049727, 03730956, 24297100, 0003889X, 00127094, 03688666, 00754102, 00246107, 00408735, and 00224049
- ISBNs :
- 9780387942681, 9780853123910, 9780387902449, 9780387953854, 9783540614722, 9783110115680, 9780387094939, 0387942688, 0853123918, 0387902449, 038795385X, 3540614729, and 3110115689
- Database :
- OpenAIRE
- Journal :
- Transactions of the American Mathematical Society, Transactions of the American Mathematical Society, American Mathematical Society, In press
- Accession number :
- edsair.doi.dedup.....b415c5236b4039dc643cf0985f6cd7c9