Back to Search Start Over

Cubic Fokker-Planck-DSMC hybrid method for diatomic rarefied gas flow through a slit and an orifice

Authors :
Eunji Jun
Publication Year :
2019

Abstract

Fokker-Planck kinetic models have been devised as an approximation of the Boltzmann collision operator. Cubic Fokker-Planck-DSMC hybrid method is employed to simulate the diatomic gas flow through a thin slit and a thin orifice. Pressure driven nitrogen expansion gas flows with two different pressure ratios are investigated at Knudsen number 0.001. The DSMC method is physically accurate for all flow regime; however it is computationally expensive in high density or near continuum regions. The Fokker-Planck-DSMC hybrid scheme employs DSMC in rarefied regions and Fokker-Planck method in near continuum flow regions for an efficient and accurate solution. Numerical procedures of the cubic Fokker-Planck method are implemented within the framework of an existing DSMC-solver, SPARTA. The Fokker-Planck-DSMC hybrid solution reproduces pure DSMC solution with improved computational efficiency up to a factor of five for vacuum flow through a thin orifice. In addition, breakdown of translational equilibrium is investigated. Domain criterion of FP-DSMC is safely smaller than Bird's breakdown criterion.

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....b405978cc9ac9b286c885b4d68477355