Back to Search Start Over

Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain

Authors :
Richard E. Straub
Daniel R. Weinberger
Qiang Chen
Eugenia Radulescu
Andrew E. Jaffe
Thomas M. Hyde
Joel E. Kleinman
Joo Heon Shin
Publication Year :
2018
Publisher :
Cold Spring Harbor Laboratory, 2018.

Abstract

Schizophrenia polygenic risk is plausibly manifested by complex transcriptional dysregulation in the brain, involving networks of co-expressed and functionally related genes. The main purpose of this study was to identify and prioritize co-expressed gene sets in a hierarchical manner, based on the strength of the relationships with clinical diagnosis and with polygenic risk for schizophrenia. Weighted Gene Co-expression Network Analysis (WGCNA) was applied to RNA-quality-adjusted DLPFC RNA-Seq data from the LIBD Postmortem Human Brain Repository (90 controls, 74 schizophrenia cases; all Caucasians) to construct co-expression networks and detect “modules” of co-expressed genes. After multiple internal and external validation procedures, modules of selected interest were tested for enrichment in biological ontologies, for association with schizophrenia polygenic risk scores (PRSs) and with diagnosis, and also for enrichment in genes within the significant GWAS loci reported by the Psychiatric Genomic Consortium (PGC2). The association between schizophrenia genetic signals and modules of co-expression converged on one module showing not only a significant association with both diagnosis and PRS but also significant overlap with 36 PGC2 loci genes, deemed the strongest candidates for drug targets. This module contained many genes involved in synaptic signaling and neuroplasticity. Fifty-three PGC2 genes were in modules associated only with diagnosis and 59 in modules unrelated to diagnosis or PRS. Our study highlights complex relationships between gene co-expression networks in the brain and clinical state and polygenic risk for SCZ and provides a strategy for using this information in selecting and prioritizing potentially targetable gene sets for therapeutic drug development.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....b3c3bd6c6b18e0c78d43f76dcf74579d
Full Text :
https://doi.org/10.1101/286559