Back to Search Start Over

Identification of a Novel QTL for Chlorate Resistance in Rice (Oryza sativa L.)

Authors :
Jin-Kyung Cha
Nkulu Rolly Kabange
Jong-Min Ko
Dongjin Shin
Sumin Jo
You-Chun Song
Jonghee Lee
So-Myeong Lee
So-Yeon Park
Youngho Kwon
Source :
Agriculture, Vol 10, Iss 360, p 360 (2020), Agriculture, Volume 10, Issue 8
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Chlorate resistance analysis is an effective approach commonly used to distinguish the genetic variation between Oryza sativa L. ssp. indica and japonica, and predict the nitrogen use efficiency (NUE). This study aimed at investigating the response of a doubled haploid (DH) population derived from anther culture of 93-11 &times<br />Milyang352 exposed to 0.1% potassium chlorate (KClO3) at the seedling stage. The results revealed that the parental rice lines 93-11 (indica) and Milyang352 (japonica) showed distinctive phenotypic responses. The parental line 93-11 scored highly sensitive (0% survival) and Milyang352 scored resistant (66.7% survival) 7 days after treatment. The DH lines reflected the differential phenotypic response observed in parental lines. Interestingly, we identified a novel quantitative trait locus (QTL) for chlorate resistance on chromosome 3 (qCHR-3, 136 cM, logarithm of the odds&mdash<br />LOD: 4.1) using Kompetitive Allele-Specific PCR (KASP) markers. The additive effect (&minus<br />11.97) and phenotypic variation explained (PVE<br />14.9%) indicated that the allele from Milyang352 explained the observed phenotypic variation. In addition, shoot growth showed a significant difference between parental lines, but not root growth. Moreover, in silico analysis identified candidate genes with diverse and interesting molecular and physiological functions. Therefore, this study suggested that the QTL qCHR-3 harbors promising candidate genes that could play a role in the regulation of nitrogen metabolism in rice.

Details

ISSN :
20770472
Volume :
10
Database :
OpenAIRE
Journal :
Agriculture
Accession number :
edsair.doi.dedup.....b3b1d0a7062a45e2876f05f6fcefd245
Full Text :
https://doi.org/10.3390/agriculture10080360