Back to Search Start Over

Finding our way through phenotypes

Authors :
Christian S. Wirkner
Monte Westerfeld
Bruno Chanet
Michael J. Sharkey
Rui Diogo
Erik Segerdell
John G. Lundberg
Suzanna E. Lewis
Christopher J. Mungall
Carolyn J. Lawrence
James Macklin
Anne E. Thessen
Katja C. Seltmann
Matthew J. Yoder
Andrew R. Deans
Ramona Walls
Peter E. Midford
Christina James-Zorn
Salvatore S. Anzaldo
Sandip Das
Sandor Csösz
Michael Ashburner
Peter D. Vize
J. Gordon Burleigh
Guillaume Lecointre
Melissa A. Haendel
T. Alexander Dececchi
Hong Cui
Mélanie Courtot
Laura M. Jackson
Hilmar Lapp
Paula M. Mabee
Robert W. Thacker
Pankaj Jaiswal
Jose Fernandez-Triana
Mauno Vihinen
Aaron D. Smith
Heather M. Hines
Alan Ruttenberg
Austin Mast
Wasila M. Dahdul
Agnès Dettai
Barry Smith
Aaron M. Zorn
Chelsea D. Specht
Nizar Ibrahim
Frank Friedrich
Michel Dumontier
Lars Vogt
István Mikó
Peter N. Robinson
Robert A. Wharton
Luke J. Harmon
James P. Balhoff
David Osumi-Sutherland
George Gkoutos
Christine E. Wall
Katja Schulz
David C. Blackburn
James B. Woolley
Stefan Richter
R. Burke Squires
Yongqun He
Helen Parkinson
Laurel Cooper
Nico M. Franz
Judith A. Blake
Eva Huala
Robert E. Druzinsky
Martín J. Ramírez
Anika Oellrich
Terry F. Hayamizu
Nicolas Le Novère
Sebastian Köhler
Department of Genetics University of Cambridge
University of Cambridge [UK] (CAM)
University of Florida [Gainesville] (UF)
Institut de Systématique, Evolution, Biodiversité (ISYEB )
Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Department of Botany and Plant Pathology
Oregon State University (OSU)
Terry Fox Laboratory
BC Cancer Agency (BCCRC)-British Columbia Cancer Agency Research Centre
Eötvös Loránd University (ELTE)
GeneDx [Gaithersburg, MD, USA]
Département Systématique et Évolution
Muséum national d'Histoire naturelle (MNHN)
Source :
PLoS Biology, Vol 13, Iss 1, p e1002033 (2015), BASE-Bielefeld Academic Search Engine, PLoS Biology, PLoS Biology, 2015, 13 (1), pp.e1002033. ⟨10.1371/journal.pbio.1002033⟩, PLoS Biology; 13(1), no e1002033 (2015), Plos Biology, 13(1):e1002033. Public Library of Science
Publication Year :
2015
Publisher :
Public Library of Science (PLoS), 2015.

Abstract

Imagine if we could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.<br />Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.

Details

Language :
English
ISSN :
15457885 and 15449173
Volume :
13
Issue :
1
Database :
OpenAIRE
Journal :
PLoS Biology
Accession number :
edsair.doi.dedup.....b35d0b5dcf0377befeeb805154932108
Full Text :
https://doi.org/10.1371/journal.pbio.1002033⟩