Back to Search Start Over

Numerical Tools for Scaling Up Bioreactors

Authors :
Jérôme Morchain
Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP)
Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Current Developments in Biotechnology and Bioengineering, Current Developments in Biotechnology and Bioengineering, ELSEVIER ACADEMIC PRESS INC, 852 p., 2017, 9780444636638. ⟨10.1016/B978-0-444-63663-8.00017-3⟩
Publication Year :
2017
Publisher :
Elsevier, 2017.

Abstract

The present paper focuses on the development of a population balance model (PBM) accounting for microbial population dynamics in a fluctuating environment. Heterogeneity within the cell population has two origins: extrinsic/intrinsic noises (cell to cell variability due to biological processes) and external noise (due to fluctuations in the cell environment). Modelling the effects of concentration gradients on the population heterogeneity was addressed in previous works using a population balance model based on the specific growth rate. However that model was unable to predict the distribution of specific growth rates experimentally observed at steady state. Using recent experimental data, we now propose a suitable law for the probability that cells growing at a given specific rate produce daughter cells with a different growth rate. Characteristic times of substrate assimilation and mixing at the cell scale are then combined to produce a generic model for substrate uptake limited by micromixing. The simulated results compare favorably to experimental observations leading to a robust multiscale model for bioreactor dynamics combining liquid-cell mass transfer and population heterogeneity

Details

ISBN :
978-0-444-63663-8
ISBNs :
9780444636638
Database :
OpenAIRE
Journal :
Current Developments in Biotechnology and Bioengineering, Current Developments in Biotechnology and Bioengineering, ELSEVIER ACADEMIC PRESS INC, 852 p., 2017, 9780444636638. ⟨10.1016/B978-0-444-63663-8.00017-3⟩
Accession number :
edsair.doi.dedup.....b35407a3b72c5114eda8a772cdf12d98