Back to Search
Start Over
On fine properties of mixtures with respect to concentration of measure and Sobolev type inequalities
- Source :
- Ann. Inst. H. Poincaré Probab. Statist. 46, no. 1 (2010), 72-96, Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2010, 46 (1), pp.72-96. ⟨10.1214/08-AIHP309⟩, Annales de l'IHP-Probabilités et Statistiques, Annales de l'IHP-Probabilités et Statistiques, 2010, 46 (1), pp.72-96. 〈10.1214/08-AIHP309〉, Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2010, 46 (1), pp.72-96. ⟨10.1214/08-AIHP309⟩, Annales de l'IHP-Probabilités et Statistiques, 2010, 46 (1), pp.72-96. ⟨10.1214/08-AIHP309⟩
- Publication Year :
- 2008
- Publisher :
- arXiv, 2008.
-
Abstract
- Mixtures are convex combinations of laws. Despite this simple definition, a mixture can be far more subtle than its mixed components. For instance, mixing Gaussian laws may produce a potential with multiple deep wells. We study in the present work fine properties of mixtures with respect to concentration of measure and Sobolev type functional inequalities. We provide sharp Laplace bounds for Lipschitz functions in the case of generic mixtures, involving a transportation cost diameter of the mixed family. Additionally, our analysis of Sobolev type inequalities for two-component mixtures reveals natural relations with some kind of band isoperimetry and support constrained interpolation via mass transportation. We show that the Poincar\'e constant of a two-component mixture may remain bounded as the mixture proportion goes to 0 or 1 while the logarithmic Sobolev constant may surprisingly blow up. This counter-intuitive result is not reducible to support disconnections, and appears as a reminiscence of the variance-entropy comparison on the two-point space. As far as mixtures are concerned, the logarithmic Sobolev inequality is less stable than the Poincar\'e inequality and the sub-Gaussian concentration for Lipschitz functions. We illustrate our results on a gallery of concrete two-component mixtures. This work leads to many open questions.<br />Comment: Corrections. To appear in Annales de l'Institut Henri Poincare (AIHP)
- Subjects :
- Statistics and Probability
Pure mathematics
Poincare inequalities
Poincaré inequality
[ MATH.MATH-FA ] Mathematics [math]/Functional Analysis [math.FA]
[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]
60E15
49Q20
46E35
62E99
01 natural sciences
Sobolev inequality
60E15, 49Q20, 46E35, 62E99
Tails probabilities
Gross logarithmic Sobolev inequalities
010104 statistics & probability
symbols.namesake
Gaussian bounds
Mallows or Wasserstein distance
Probability theory
FOS: Mathematics
Mixtures of distributions
0101 mathematics
Mathematics
Transportation cost distances
Laplace transform
Mass transportation
Concentration of measure
010102 general mathematics
Probability (math.PR)
Functional inequalities
Poincaré inequalities
Lipschitz continuity
Functional Analysis (math.FA)
Mathematics - Functional Analysis
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Sobolev space
Band isoperimetry
Transportation of measure
Bounded function
Deviation inequalities
symbols
Finite Gaussian mixtures
Statistics, Probability and Uncertainty
[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]
Mathematics - Probability
Subjects
Details
- ISSN :
- 02460203 and 17787017
- Database :
- OpenAIRE
- Journal :
- Ann. Inst. H. Poincaré Probab. Statist. 46, no. 1 (2010), 72-96, Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2010, 46 (1), pp.72-96. ⟨10.1214/08-AIHP309⟩, Annales de l'IHP-Probabilités et Statistiques, Annales de l'IHP-Probabilités et Statistiques, 2010, 46 (1), pp.72-96. 〈10.1214/08-AIHP309〉, Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), 2010, 46 (1), pp.72-96. ⟨10.1214/08-AIHP309⟩, Annales de l'IHP-Probabilités et Statistiques, 2010, 46 (1), pp.72-96. ⟨10.1214/08-AIHP309⟩
- Accession number :
- edsair.doi.dedup.....b31bcb3c50be90376db32a79c614a725
- Full Text :
- https://doi.org/10.48550/arxiv.0805.0987