Back to Search
Start Over
Rakeness-based compressed sensing on ultra-low power multi-core biomedicai processors
- Source :
- DASIP
- Publication Year :
- 2014
- Publisher :
- IEEE Computer Society, 2014.
-
Abstract
- Technology scaling enables today the design of ultra-low cost wireless body sensor networks for wearable biomedical monitors. The typical behaviour of such systems consists of multi-channel input biosignals acquisition data compression and final output transmission or storage. To achieve minimal energy operation and extend battery life several aspects must be considered ranging from signal processing to architectural optimizations. The recently proposed Rakeness-based Compressed Sensing (CS) paradigm deploys the localization of input signal energy to further increase compression without sensible RSNR degradation. Such output size reduction allows for trading off energy from the compression stage to the transmission or storage stage. In this paper we analyze such tradeoffs considering a multi-core DSP for input biosignal computation and different technologies for either transmission or local storage. The experimental results show the effectiveness of the Rakeness approach (on average ≈ 44% more efficient than the baseline) and assess the energy gains in a technological perspective.
- Subjects :
- Signal processing
Computer science
business.industry
Computer Graphics and Computer-Aided Design
NO
Compressed sensing
Transmission (telecommunications)
Hardware and Architecture
Signal Processing
Biosignal
Electrical and Electronic Engineering
business
Wireless sensor network
Energy (signal processing)
Digital signal processing
Computer hardware
1707
Data compression
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- DASIP
- Accession number :
- edsair.doi.dedup.....b31b9f8142d5a9ac3d20741e17652a4b