Back to Search Start Over

Sensitive tracking of circulating viral RNA through all stages of SARS-CoV-2 infection

Authors :
Alex Niu
Bo Ning
James E. Robinson
Monika L. Dietrich
Elizabeth B. Norton
Alyssa C. Fears
Jim Yee
Weihua Lai
Nakhle S. Saba
Chandler H. Monk
Kevin J. Zwezdaryk
Joshua P. Linhuber
Zhen Huang
Samantha J. Bilton
Christopher J. Lyon
Brady M. Youngquist
Xiao-Ming Yin
He S. Yang
Zhen Zhao
Brandon J. Beddingfield
Jay Rappaport
John W Scott
Amelie E. Murrell
Tony Y. Hu
Chad J. Roy
Source :
J Clin Invest
Publication Year :
2021
Publisher :
American Society for Clinical Investigation, 2021.

Abstract

BACKGROUND: Circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA may represent a more reliable indicator of infection than nasal RNA, but quantitative reverse transcription PCR (RT-qPCR) lacks diagnostic sensitivity for blood samples. METHODS: A CRISPR-augmented RT-PCR assay that sensitively detects SARS-CoV-2 RNA was employed to analyze viral RNA kinetics in longitudinal plasma samples from nonhuman primates (NHPs) after virus exposure; to evaluate the utility of blood SARS-CoV-2 RNA detection for coronavirus disease 2019 (COVID-19) diagnosis in adults cases confirmed by nasal/nasopharyngeal swab RT-PCR results; and to identify suspected COVID-19 cases in pediatric and at-risk adult populations with negative nasal swab RT-qPCR results. All blood samples were analyzed by RT-qPCR to allow direct comparisons. RESULTS: CRISPR-augmented RT-PCR consistently detected SARS-CoV-2 RNA in the plasma of experimentally infected NHPs from 1 to 28 days after infection, and these increases preceded and correlated with rectal swab viral RNA increases. In a patient cohort (n = 159), this blood-based assay demonstrated 91.2% diagnostic sensitivity and 99.2% diagnostic specificity versus a comparator RT-qPCR nasal/nasopharyngeal test, whereas RT-qPCR exhibited 44.1% diagnostic sensitivity and 100% specificity for the same blood samples. This CRISPR-augmented RT-PCR assay also accurately identified patients with COVID-19 using one or more negative nasal swab RT-qPCR results. CONCLUSION: Results of this study indicate that sensitive detection of SARS-CoV-2 RNA in blood by CRISPR-augmented RT-PCR permits accurate COVID-19 diagnosis, and can detect COVID-19 cases with transient or negative nasal swab RT-qPCR results, suggesting that this approach could improve COVID-19 diagnosis and the evaluation of SARS-CoV-2 infection clearance, and predict the severity of infection. TRIAL REGISTRATION: ClinicalTrials.gov. NCT04358211. FUNDING: Department of Defense, National Institute of Allergy and Infectious Diseases, National Institute of Child Health and Human Development, and the National Center for Research Resources.

Details

Language :
English
Database :
OpenAIRE
Journal :
J Clin Invest
Accession number :
edsair.doi.dedup.....b306b06d4af65c32befeeee6e0bab1e5