Back to Search Start Over

Exact Solutions of the Razavy Cosine Type Potential

Authors :
Qian Dong
S. Femmam
Guo-Hua Sun
Shi-Hai Dong
Shishan Dong
Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))
École polytechnique (X)
Source :
Adv.High Energy Phys., Adv.High Energy Phys., 2018, 2018, pp.5824271. ⟨10.1155/2018/5824271⟩, Advances in High Energy Physics, Advances in High Energy Physics, Vol 2018 (2018)
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

We solve the quantum system with the symmetric Razavy cosine type potential and find that its exact solutions are given by the confluent Heun function. The eigenvalues are calculated numerically. The properties of the wave functions, which depend on the potential parameter a, are illustrated for a given potential parameter ξ. It is shown that the wave functions are shrunk to the origin when the potential parameter a increases. We note that the energy levels ϵi (i∈[1,3]) decrease with the increasing potential parameter a but the energy levels ϵi (i∈[4,7]) first increase and then decrease with the increasing a.

Details

Language :
English
Database :
OpenAIRE
Journal :
Adv.High Energy Phys., Adv.High Energy Phys., 2018, 2018, pp.5824271. ⟨10.1155/2018/5824271⟩, Advances in High Energy Physics, Advances in High Energy Physics, Vol 2018 (2018)
Accession number :
edsair.doi.dedup.....b2f29df741ea7c24dfa114f77bfb35df