Back to Search Start Over

Different Single-Enzyme Conformational Dynamics upon Binding Hydrolyzable or Nonhydrolyzable Ligands

Authors :
Arith J. Rajapakse
Myungkeun Oh
Sung Oh Woo
Jasmin Farmakes
Philip G. Collins
Zhongyu Yang
Yongki Choi
Lina Alhalhooly
Source :
The journal of physical chemistry. B, vol 125, iss 22, J Phys Chem B
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Single-molecule measurements of protein dynamics help unveil the complex conformational changes and transitions that occur during ligand binding and catalytic processes. Using high-resolution single-molecule nanocircuit techniques, we have investigated differences in the conformational dynamics and transitions of lysozyme interacting with three ligands: peptidoglycan substrate, substrate-based chitin analogue, and indole derivative inhibitors. While processing peptidoglycan, lysozyme followed one of the two mechanistic pathways for the hydrolysis of the glycosidic bonds: a concerted mechanism inducing direct conformational changes from open to fully closed conformations or a nonconcerted mechanism involving transient pauses in intermediate conformations between the open and closed conformations. In the presence of either chitin or an indole inhibitor, lysozyme was unable to access the fully closed conformation where catalysis occurs. Instead, lysozymes' conformational closures terminated at slightly closed, "excited" conformations that were approximately one-quarter of the full hinge-bending range. With the indole inhibitor, lysozyme reached this excited conformation in a single step without any evidence of rate-liming intermediates, but the same conformational motions with chitin involved three hidden, intermediate processes and features similar to the nonconcerted peptidoglycan mechanism. The similarities suggest that these hidden processes involve attempts to accommodate imperfectly aligned polysaccharides in the active site. The results provide a detailed glimpse of the enzyme-ligand interplay at the crux of molecular recognition, enzyme specificity, and catalysis.

Details

ISSN :
15205207 and 15206106
Volume :
125
Database :
OpenAIRE
Journal :
The Journal of Physical Chemistry B
Accession number :
edsair.doi.dedup.....b2e3e225b48cdaa5aa084e5fdef042c8
Full Text :
https://doi.org/10.1021/acs.jpcb.1c01589