Back to Search
Start Over
Analysis of Type II and Type III Radio Bursts Associated with SEPs from Non-Interacting/Interacting Radio-Loud CMEs
- Source :
- Astrophysics. 64:327-344
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- We analyze radio bursts observed in events with interacting/non-interacting CMEs that produced major SEPs (Ip $>$ 10 MeV) fromApril 1997 to December 2014.We compare properties of meter (m), deca-hectometer (DH) type II as well as DH type III bursts, and time lags for interacting-CME-associated (IC) events and non-interacting-CME-associated (NIC) events. About 70\% of radio emissions were observed in events of both types from meters to kilometers. We found high correlations between the drift rates and mid-frequencies of type II radio bursts calculated as the mean geometric between their starting and ending frequencies for both NIC and IC-associated events (Correlation coefficient \textit{R}$^{2}$ = 0.98, power-law index $\varepsilon$ = 1.68 $\pm $ 0.16 and \textit{R}$^{2}$ = 0.93, $\varepsilon$ = 1.64 $\pm $ 0.19 respectively).We also found a correlation between the frequency drift rates of DH type II bursts and space speeds of CMEs in NIC-associated events. The absence of such correlation for IC-associated events confirms that the shock speeds changed in CME--CME interactions. For the events with western source locations, the mean peak intensity of SEPs in IC-associated events is four times larger than that in NIC-associated SEP events. From the mean time lags between the start times of SEP events and the start of m, DH type II, and DH type III radio bursts, we inferred that particle enhancements in NIC-associated SEP events occurred earlier than in IC-associated SEP events. The difference between NIC events and IC events in the mean values of parameters of type II and type III bursts is statistically insignificant.<br />15 pages, 4 figures, 2 tables
- Subjects :
- High Energy Astrophysical Phenomena (astro-ph.HE)
Physics
14J60
Correlation coefficient
Frequency drift
FOS: Physical sciences
Astronomy and Astrophysics
Astrophysics
radio-loud CMEs: Solar flares: m- and DH type II radio bursts: DH type III radio bursts [Solar energetic particle events (SEPs)]
Astrophysics - Solar and Stellar Astrophysics
Peak intensity
Start time
F.2.2
Astrophysics - High Energy Astrophysical Phenomena
Solar and Stellar Astrophysics (astro-ph.SR)
Subjects
Details
- ISSN :
- 15738191 and 05717256
- Volume :
- 64
- Database :
- OpenAIRE
- Journal :
- Astrophysics
- Accession number :
- edsair.doi.dedup.....b2ccb831e4b252ba72b3151b455b9912