Back to Search
Start Over
The effect of mechanical behavior on bendability of ultrahigh-strength steel
- Source :
- Materials Today Communications. 26:101943
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Bendability is an important property of ultrahigh-strength steels since the typical applications of such materials include structures manufactured by air-bending. Conventional methods to evaluate bendability, such as the bending test according to the standard VDA-238 or the conventional tensile test do not provide sufficient information to evaluate bendability of ultrahigh-strength steels due to the average nature of the material response in these tests. In this study, the mechanical properties were determined using thin tensile specimens cut from the surface of the sheet and the evaluation of bendability was carried out using frictionless bending tests. The results of the experiments and FE-modelling presented in this paper reveal that the mechanical properties of the sheet surface have a significant impact on bendability. Novel ultrahigh-strength steel with better work-hardening capacity at the surface caused by a layer of relatively soft ferrite and lower bainite has good bendability, especially when the bend line is aligned transverse to the rolling direction. Microstructural investigations reveal that in a conventional steel with a relatively hard surface microstructure, the deformation localizes into shear bands that eventually lead to fracture, but similar shear banding was not present in the novel steel surface. This can be attributed to the better work-hardening capacity which delays the onset of shear localization and fracture.
- Subjects :
- Materials science
Bending (metalworking)
Bainite
Failure
02 engineering and technology
010402 general chemistry
01 natural sciences
Work-hardening
Ferrite (iron)
Ultimate tensile strength
Materials Chemistry
General Materials Science
Composite material
Microstructure
Ductility
Tensile testing
Mechanical testing
021001 nanoscience & nanotechnology
0104 chemical sciences
Shear (sheet metal)
Mechanics of Materials
Deformation (engineering)
Bendability
Strain localization
0210 nano-technology
Subjects
Details
- ISSN :
- 23524928
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- Materials Today Communications
- Accession number :
- edsair.doi.dedup.....b2b97896684024cd70b206f8f8015ff7
- Full Text :
- https://doi.org/10.1016/j.mtcomm.2020.101943