Back to Search
Start Over
Toddaculin, Isolated from of Toddalia asiatica (L.) Lam., Inhibited Osteoclastogenesis in RAW 264 Cells and Enhanced Osteoblastogenesis in MC3T3-E1 Cells
- Source :
- PLoS ONE, Vol 10, Iss 5, p e0127158 (2015), PLoS ONE
- Publication Year :
- 2015
- Publisher :
- Public Library of Science (PLoS), 2015.
-
Abstract
- Osteoporosis with bone loss is widely recognized as a major health problem. Bone homeostasis is maintained by balancing bone formation and bone resorption. The imbalance caused by increased bone resorption over bone formation can lead to various bone-related diseases such as osteoporosis and rheumatoid arthritis. Osteoclasts are the principal cells responsible for bone resorption and the main targets of anti-resorptive therapies. However, excessive inhibition of osteoclast differentiation may lead to inhibition of osteoblast differentiation. Therefore, it is important to screen for new compounds capable of inhibiting bone resorption and enhancing bone formation. Toddalia asiatica (L.) Lam. has been utilized traditionally for medicinal purposes such as the treatment of rheumatism. Currently, the extract is considered to be a good source of pharmacological agents for the treatment of bone-related diseases, but the active compounds have yet to be identified. We investigated whether toddaculin, derived from Toddalia asiatica (L.) Lam., affects both processes by inhibiting bone resorption and enhancing bone formation. Towards this end, we used pre-osteoclastic RAW 264 cells and pre-osteoblastic MC3T3-E1 cells. We found that toddaculin not only inhibited the differentiation of osteoclasts via activation of the NF-κB, ERK 1/2, and p38 MAPK signaling pathways, but it also induced differentiation and mineralization of osteoblasts by regulating differentiation factors. Thus, toddaculin might be beneficial for the prevention and treatment of osteoporosis.
- Subjects :
- MAPK/ERK pathway
medicine.medical_specialty
Cellular differentiation
Osteoporosis
Osteoclasts
lcsh:Medicine
Pharmacology
Bone resorption
Cell Line
Mice
Osteoclast
Coumarins
Osteogenesis
Internal medicine
medicine
Animals
lcsh:Science
Multidisciplinary
Osteoblasts
Chemistry
Plant Extracts
lcsh:R
Osteoblast
Cell Differentiation
medicine.disease
Endocrinology
medicine.anatomical_structure
Gene Expression Regulation
Cell culture
lcsh:Q
Signal transduction
Signal Transduction
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 10
- Issue :
- 5
- Database :
- OpenAIRE
- Journal :
- PLoS ONE
- Accession number :
- edsair.doi.dedup.....b26ac5844b4ff25c8877b975b9cdc976