Back to Search Start Over

Analysis of First LIGO Science Data for Stochastic Gravitational Waves

Authors :
P. Ehrens
S. Traeger
Erika D'Ambrosio
Morag M. Casey
M. Heurs
B. J. Winjum
Timothy Evans
R. Coldwell
D. Sigg
S. W. Ballmer
G. Moreno
David H. Shoemaker
A. Gillespie
David Crooks
J. Logan
R. K. Nayak
N. Hindman
R. Amin
Alberto Vecchio
C. Barker-Patton
F. Mann
Peter Fritschel
Keisuke Goda
Erik Katsavounidis
S. Penn
Pamela J. Russell
S. Richman
Oliver Jennrich
E. Rotthoff
R. Rahkola
H. Ward
A. Ivanov
H. Radkins
S. P. Vyachanin
J. Betzwieser
B. Sears
Vicky Kalogera
M. J. Lubinski
M. A. Barton
W. Tyler
Szabolcs Marka
W. R. Johnston
Rana X. Adhikari
B. Machenschalk
R. Taylor
D. Ugolini
Carsten Fallnich
J. Kovalik
G. Mendell
F. Asiri
Kip S. Thorne
J. Chapsky
J. Heefner
Raymond G. Beausoleil
A. Rizzi
Gerhard Heinzel
C. Hardham
Benno Willke
D. Farnham
Robert Spero
Soumya D. Mohanty
N. Zotov
A. M. Gretarsson
Badri Krishnan
Antony C. Searle
D.B. DeBra
K. Mason
T. Summerscales
Gregory M. Harry
M. Lei
T. Olson
Sanjeev Dhurandhar
C. Parameswariah
Sheila Rowan
V. Schmidt
B. Mours
Lindon J. Robison
J. Mason
Vladimir B. Braginsky
K. Riles
R. Balasubramanian
Alessandra Buonanno
M. MacInnis
B. F. Whiting
L. Jones
A. Khan
V. P. Mitrofanov
Peter R. Saulson
Michael Landry
R. Davies
R. Bennett
William E. Butler
M. Hammond
U. Weiland
J. Langdale
M. Fyffe
C. Gray
M. C. Araya
Helena Armandula
Albrecht Rüdiger
Virginio Sannibale
M. Ito
Walter Winkler
Peter H. Sneddon
David E. McClelland
E. J. Elliffe
Harald Lück
G. Billingsley
Martin P McHugh
G. Traylor
M. R. Smith
M. H. P. M. van Putten
M. W.E. Smith
J. Kern
Thomas Corbitt
Albert Lazzarini
P. R. Williams
Sanichiro Yoshida
W. Hua
Gabriela Gonzalez
A. Ageev
Graham Woan
Robert L. Byer
Xavier Siemens
Adrian C. Ottewill
Yousuke Itoh
S. Tilav
Jolien D. E. Creighton
Michele Vallisneri
Michael E Zucker
Ik Siong Heng
C. A. Shapiro
M. Rakhmanov
Akiteru Takamori
J. E. Brau
K. Mailand
E. Maros
Krzysztof Belczynski
H. Overmier
B. Bland-Weaver
Bernard F. Schutz
Yi Chen
R. Mittleman
D. Churches
Nelson Christensen
M. Hennessy
Q. Z. Shu
A. Hartunian
Chunglee Kim
G. Stapfer
J. Hanson
A. L. Stuver
T. Etzel
B. Bochner
A. Wilson
Massimo Tinto
Guido Mueller
O. Matherny
R. J. Dupuis
A. Chandler
Laura Cadonati
D. Ouimette
J. H. Romie
K. Bayer
J. G. Rollins
Kevin M. Ryan
B. Barr
S. Nagano
B. Lantz
J. Worden
D. Redding
P. Schwinberg
R. DeSalvo
J. Castiglione
P. Charlton
F. J. Raab
V. Parameswariah
M. Coles
M. Guenther
Scott Koranda
L. Matone
Philippe Grandclément
S. Meshkov
P. J. Sutton
Haisheng Rong
I. Salzman
V. Leonhardt
D. Webber
K. Kawabe
R. Gustafson
T. Delker
Susan M. Scott
Teviet Creighton
V. Quetschke
Bangalore Suryanarayana Sathyaprakash
E. Black
H. Tariq
D. Jungwirth
P. Hoang
R. M. S. Schofield
Benjamin J. Owen
I. A. Bilenko
Ian Taylor
C. Torres
S. Chatterji
Shinji Miyoki
Herbert Walther
Martin M. Fejer
J. R. Smith
R. Bork
Marco Aurelio Diaz
M. Mageswaran
K. Reithmaier
T. Nash
A. Sibley
Andreas Freise
K. V. Tokmakov
David J. Ottaway
R. Riesen
K. Kötter
Matthew Pitkin
A. Sazonov
R. Wooley
N. Hepler
Patrick Brady
C. Messenger
J. Zweizig
C. A. Cantley
A. J. Weinstein
S. Brozek
Curt Cutler
G. H. Sanders
R. Lawrence
Richard L. Savage
D. B. Kozak
Robert J. McCarthy
Roland Schilling
C. Vorvick
Benjamin William Allen
I. Zawischa
Linqing Wen
F. Nocera
Martin Hewitson
C. Aulbert
P. Kloevekorn
Karsten Danzmann
M. C. Sumner
Seiji Kawamura
V. V. Frolov
J. A. Giaime
Eric K. Gustafson
T. Regimbau
Y. Hefetz
C. I. Torrie
A. Heptonstall
M. Malec
A. Grant
S. Liu
S. Wen
W. G. Anderson
Joseph D. Romano
D. Chin
C. King
Gianpietro Cagnoli
Phil Willems
Peter Shawhan
Jeffrey A. Edlund
M. Tibbits
B. P. Abbott
T. T. Lyons
L. Zhang
Kasem Mossavi
Osamu Miyakawa
David H. Reitze
Christian J. Killow
Stanislav Babak
Walid A. Majid
S. Vass
Duncan A. Brown
D. M. Strom
Richard J. Abbott
W. Kells
D. Busby
Brent Ware
R. Burgess
J. Myers
C. Ebeling
Suvadeep Bose
S. Wise
S. Grunewald
M. Hrynevych
D. I. Robertson
Kenneth G. Libbrecht
Roy Williams
K. S. Ganezer
K. Watts
S. E. Whitcomb
Stefan Goßler
K. T. Reilly
Kevin C. Schlaufman
Herbert Welling
Nergis Mavalvala
S. J. Berukoff
Kevin M. Carter
S. B. Anderson
David B. Tanner
M. W. Regehr
A. Marin
M. Pedraza
Maria Alessandra Papa
Kent Blackburn
N. A. Robertson
I. Leonor
E. J. Daw
D. Rose
Rainer Weiss
R. W. P. Drever
W. W. Johnson
M. Lormand
M. Fine
Richard Ingley
A. Bullington
M. Schrempel
L. Bogue
Jordan Camp
A. S. Sengupta
G. Newton
M. R. Pratt
Matthew Evans
L. Cardenas
S. Klimenko
C. Colacino
Kenneth A. Strain
A. Weidner
B. O'Reilly
Peter Aufmuth
V. Chickarmane
H. Naundorf
B. Bhawal
P. Csatorday
M. V. Plissi
Hartmut Grote
P. E. Lindquist
Soma Mukherjee
H. Yamamoto
W. O. Hamilton
Kenneth D. Skeldon
S. Killbourn
James Whelan
H. Ding
J. H. Hough
Douglas R. Cook
S. Seel
I. Yakushin
Guenakh Mitselmakher
Flanagan
L. Sievers
M. Barnes
Julien Sylvestre
P. McNamara
L. Wallace
R. Frey
P. J. King
D. Grimmett
Philip Nutzman
A. G. Wiseman
D. C. Coyne
D. Barker
S. Roddy
A. M. Sintes
Lee Samuel Finn
B. C. Barish
B. J. Cusack
S. R. Rao
The LIGO Scientific Collaboration
Source :
Physical Review D, Physical Review D-Particles, Fields, Gravitation and Cosmology 69 (2004), Nr. 12, Physical Review D-Particles, Fields, Gravitation and Cosmology
Publication Year :
2003
Publisher :
arXiv, 2003.

Abstract

We present the analysis of between 50 and 100 hrs of coincident interferometric strain data used to search for and establish an upper limit on a stochastic background of gravitational radiation. These data come from the first LIGO science run, during which all three LIGO interferometers were operated over a 2-week period spanning August and September of 2002. The method of cross-correlating the outputs of two interferometers is used for analysis. We describe in detail practical signal processing issues that arise when working with real data, and we establish an observational upper limit on a f^{-3} power spectrum of gravitational waves. Our 90% confidence limit is Omega_0 h_{100}^2 < 23 in the frequency band 40 to 314 Hz, where h_{100} is the Hubble constant in units of 100 km/sec/Mpc and Omega_0 is the gravitational wave energy density per logarithmic frequency interval in units of the closure density. This limit is approximately 10^4 times better than the previous, broadband direct limit using interferometric detectors, and nearly 3 times better than the best narrow-band bar detector limit. As LIGO and other worldwide detectors improve in sensitivity and attain their design goals, the analysis procedures described here should lead to stochastic background sensitivity levels of astrophysical interest.<br />26 pages, 17 figures

Details

ISSN :
15502368 and 05562821
Database :
OpenAIRE
Journal :
Physical Review D, Physical Review D-Particles, Fields, Gravitation and Cosmology 69 (2004), Nr. 12, Physical Review D-Particles, Fields, Gravitation and Cosmology
Accession number :
edsair.doi.dedup.....b23e3a5b4560636aa33155ea04065803
Full Text :
https://doi.org/10.48550/arxiv.gr-qc/0312088