Back to Search
Start Over
An Inverse Problem in Quantum Statistical Physics
- Source :
- Journal of Statistical Physics, Journal of Statistical Physics, 2010, 140 (3), pp.565-602. ⟨10.1007/s10955-010-0003-z⟩, Journal of Statistical Physics, Springer Verlag, 2010, 140 (3), pp.565-602. ⟨10.1007/s10955-010-0003-z⟩, Journal of Statistical Physics, Springer Verlag, 2010, 140 (3), pp.565-602. 〈10.1007/s10955-010-0003-z〉
- Publication Year :
- 2010
- Publisher :
- Springer Science and Business Media LLC, 2010.
-
Abstract
- International audience; We address the following inverse problem in quantum statistical physics: does the quantum free energy (von Neumann entropy + kinetic energy) admit a unique minimizer among the density operators having a given local density $n(x)$? We give a positive answer to that question, in dimension one. This enables to define rigourously the notion of local quantum equilibrium, or quantum Maxwellian, which is at the basis of recently derived quantum hydrodynamic models and quantum drift-diffusion models. We also characterize this unique minimizer, which takes the form of a global thermodynamic equilibrium (canonical ensemble) with a quantum chemical potential.
- Subjects :
- Density matrix
Thermodynamic equilibrium
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
FOS: Physical sciences
Von Neumann entropy
Kinetic energy
01 natural sciences
[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP]
Mathematics - Analysis of PDEs
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Statistical physics
0101 mathematics
Quantum
Mathematical Physics
Canonical ensemble
Physics
Basis (linear algebra)
010102 general mathematics
[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Inverse problem
010101 applied mathematics
[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]
Analysis of PDEs (math.AP)
Subjects
Details
- ISSN :
- 15729613 and 00224715
- Volume :
- 140
- Database :
- OpenAIRE
- Journal :
- Journal of Statistical Physics
- Accession number :
- edsair.doi.dedup.....b21d8b62d12b85d725516651a24ec71a
- Full Text :
- https://doi.org/10.1007/s10955-010-0003-z