Back to Search Start Over

Exploring the relevance of NUP93 variants in steroid-resistant nephrotic syndrome using next generation sequencing and a fly kidney model

Authors :
Agnieszka Bierzynska
Katherine Bull
Sara Miellet
Philip Dean
Chris Neal
Elizabeth Colby
Hugh J. McCarthy
Shivaram Hegde
Manish D. Sinha
Carmen Bugarin Diz
Kathleen Stirrups
Karyn Megy
Rutendo Mapeta
Chris Penkett
Sarah Marsh
Natalie Forrester
Maryam Afzal
Hannah Stark
NIHR BioResource
Maggie Williams
Gavin I. Welsh
Ania B. Koziell
Paul S. Hartley
Moin A. Saleem
Saleem, Moin A [0000-0002-9808-4518]
Apollo - University of Cambridge Repository
Source :
Bierzynska, A, Bull, K, Miellet, S, Dean, P, Neal, C, Colby, E, McCarthy, H J, Hegde, S, Sinha, M D, Bugarin Diz, C, Stirrups, K, Megy, K, Mapeta, R, Penkett, C, Marsh, S, Forrester, N, Afzal, M, Stark, H, BioResource, N, Williams, M, Welsh, G I, Koziell, A B, Hartley, P S & Saleem, M A 2022, ' Exploring the relevance of NUP93 variants in steroid-resistant nephrotic syndrome using next generation sequencing and a fly kidney model ', Pediatric Nephrology, vol. 37, no. 11, pp. 2643-2656 . https://doi.org/10.1007/s00467-022-05440-5, Pediatric Nephrology
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

Background Variants in genes encoding nuclear pore complex (NPC) proteins are a newly identified cause of paediatric steroid-resistant nephrotic syndrome (SRNS). Recent reports describing NUP93 variants suggest these could be a significant cause of paediatric onset SRNS. We report NUP93 cases in the UK and demonstrate in vivo functional effects of Nup93 depletion in a fly (Drosophila melanogaster) nephrocyte model. Methods Three hundred thirty-seven paediatric SRNS patients from the National cohort of patients with Nephrotic Syndrome (NephroS) were whole exome and/or whole genome sequenced. Patients were screened for over 70 genes known to be associated with Nephrotic Syndrome (NS). D. melanogaster Nup93 knockdown was achieved by RNA interference using nephrocyte-restricted drivers. Results Six novel homozygous and compound heterozygous NUP93 variants were detected in 3 sporadic and 2 familial paediatric onset SRNS characterised histologically by focal segmental glomerulosclerosis (FSGS) and progressing to kidney failure by 12 months from clinical diagnosis. Silencing of the two orthologs of human NUP93 expressed in D. melanogaster, Nup93-1, and Nup93-2 resulted in significant signal reduction of up to 82% in adult pericardial nephrocytes with concomitant disruption of NPC protein expression. Additionally, nephrocyte morphology was highly abnormal in Nup93-1 and Nup93-2 silenced flies surviving to adulthood. Conclusion We expand the spectrum of NUP93 variants detected in paediatric onset SRNS and demonstrate its incidence within a national cohort. Silencing of either D. melanogaster Nup93 ortholog caused a severe nephrocyte phenotype, signaling an important role for the nucleoporin complex in podocyte biology. Graphical Abstract A higher resolution version of the Graphical abstract is available as Supplementary information

Details

Database :
OpenAIRE
Journal :
Bierzynska, A, Bull, K, Miellet, S, Dean, P, Neal, C, Colby, E, McCarthy, H J, Hegde, S, Sinha, M D, Bugarin Diz, C, Stirrups, K, Megy, K, Mapeta, R, Penkett, C, Marsh, S, Forrester, N, Afzal, M, Stark, H, BioResource, N, Williams, M, Welsh, G I, Koziell, A B, Hartley, P S & Saleem, M A 2022, ' Exploring the relevance of NUP93 variants in steroid-resistant nephrotic syndrome using next generation sequencing and a fly kidney model ', Pediatric Nephrology, vol. 37, no. 11, pp. 2643-2656 . https://doi.org/10.1007/s00467-022-05440-5, Pediatric Nephrology
Accession number :
edsair.doi.dedup.....b20ca2e7b3023d1c2067023bde5c63f0
Full Text :
https://doi.org/10.17863/cam.88592